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Introduction
The clinical manifestations of drug addic-
tion are the subject of medical literature
and fiction alike. In Novel with Cocaine,
first published almost 80 years ago under a
pseudonym and only recently rediscov-
ered, Mark Levi provides a disturbing ac-
count of a young Russian man becoming
addicted to cocaine. Vadim, the novel’s
antihero reflects: “Before I came in con-
tact with cocaine I assumed that happi-
ness was an entity, while in fact all human
happiness consists of a clever fusion of
two elements: the physical feeling of hap-
piness, and the external event providing
the psychic impetus for that feeling.”

This statement eloquently describes a
core element of the addiction process. An
initially neutral stimulus becomes attrac-
tive when associated with drug consump-
tion, and even after prolonged periods of
abstinence this cue may trigger craving
and cause the subject to relapse (Stewart et
al., 1984; Childress et al., 1988). The risk
for relapse remains high after years of ab-
stinence, which constitutes a major chal-
lenge for treating drug addiction.

Therefore, many researchers have argued
that the secret to understanding addiction lies
in the elucidation of the “memory trace” that
links the cue to the compulsive drug use. The

implicit underlying hypothesis is that addic-
tive drugs generate an inappropriate learning
signal that leads to the encoding of a unique
trace, which, when reactivated, has a strong
behavioral impact(Redishetal.,2008;Schultz,
2011).

Here we will review emerging evidence
that the cellular correlates of the drug
memory trace are the various forms of
synaptic plasticity, mainly of glutamater-
gic transmission, in the circuits of the
mesolimbic system, which we have previ-
ously called “drug-evoked synaptic plas-
ticity” (Lüscher and Malenka, 2011). We
will review the literature reporting drug-
evoked synaptic plasticity in animal mod-
els of addiction and argue for a staged
remodeling of the mesolimbic circuitry
(Kalivas and O’Brien, 2008) that is even-
tually responsible for relapse and compul-
sive drug use.

Animal models
The study of the neurobiological mecha-
nisms underlying addictive behavior re-
quires animal models. While the basis of
behavioral pharmacology was laid out us-
ing nonhuman primates and rats, more
recently genetically modified mice have
become extremely useful tools. There is
general agreement that no animal model
fully reflects the complexity of the human
disease. Many behavioral studies, however,
reproduce core components of addiction,
starting with the self-administration (SA) of
the substance (Clark et al., 1961). De-
pending on the substance involved, SA
can be oral (e.g., ethanol or benzodiaz-
epines; Licata and Rowlett, 2008; Venge-
liene et al., 2009), intravenous (e.g.,
cocaine through a jugular catheter in rats
or mice; Gerber and Wise, 1989; Jackson

et al., 1998), or even directly into a specific
brain region [e.g., morphine into the ven-
tral tegmental area (VTA); Bozarth and
Wise, 1981]. While SA is a necessary con-
dition to demonstrate the reinforcing na-
ture of a given substance, it is by no means
sufficient (Collins et al., 1984). SA trans-
lates well to clinical reports of drug liking;
however, used in its most basic form, it
does not fully mimic core features of ad-
diction, including loss of control or re-
lapse after periods of extended withdrawal
(O’Connor et al., 2011). What are needed
for mechanistic investigations of the syn-
aptic drug trace are tests that demonstrate
drug-adaptive behavior associated with
an external stimulus. Locomotor sensiti-
zation, often used as a proxy of incentive
saliency, refers to the enhanced locomo-
tor effect of cocaine and other psycho-
stimulants, which can be observed already
at the second injection of the drug (Rob-
inson and Berridge, 2001). Locomotor
sensitization also has an associative com-
ponent, as its magnitude depends on the
environment (the effect is enhanced in a
novel environment; Badiani et al., 1995).
Importantly, locomotor sensitization is
already observed several days after a single
injection (Valjent et al., 2010) and many
weeks after repeated injections. A direct
measure of the association with the envi-
ronment can be obtained in the condi-
tioned place preference (CPP) test. In this
paradigm, using an apparatus with two
distinct compartments, one side is paired
with the drug injection, the other with sa-
line. Already after a first session, a prefer-
ence for the compartment where the drug
was received can be measured. Both loco-
motor sensitization and CPP, however,
have the disadvantage that the drug is
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injected by the experimenter, which
strongly contrasts with the clinical reality.
A more accurate model therefore is cue-
induced cocaine seeking (De Wit and
Stewart, 1981; Shaham et al., 2003), where
lever pressing or nose poking for a drug
injection is paired with a cue (light or
sound). After acquisition of SA, the sim-
ple presentation of the cue will prompt a
seeking behavior even though the drug is
no longer available. This effect can be ob-
served up to several weeks after the last SA
session in rats (Kruzich et al., 2001) and
mice (Highfield et al., 2002). One interest-
ing feature is that the seeking behavior be-
comes stronger over the first few weeks of
withdrawal, an observation called “incu-
bation of craving” (Grimm et al., 2001).

Dopamine hypothesis
What is the pharmacological effect defin-
ing addictive drugs that is eventually re-
sponsible for the adaptive behavior? They
all increase mesolimbic dopamine (DA)
levels, which mediate their reinforcing ef-
fect (Wise, 1987; Di Chiara and Imperato,
1988). While this statement is supported
by many experiments, particularly early
behavioral pharmacology studies, it has
been challenged, most prominently by ge-
netic manipulations. For example, even
though cocaine increases mesolimbic DA
by inhibiting the DA transporter (DAT);
mice lacking the DAT still readily self-
administer cocaine (Rocha et al., 1998).
Arguably, this observation is incompatible
with the DA hypothesis. However, subse-
quent work during the last decade has dem-
onstrated that in these DAT-lacking mice,
abnormally high levels of DA during devel-
opment induce adaptations in the mesolim-
bic DA system. Consequently, the results of
cocaine self-administration in these mice re-
quire reinterpretation. Rather than a com-
plete knockout, a more subtle manipulation
consisting of point mutations renders the
DAT insensitive to cocaine but induces only
minimal effects on DA reuptake (Chen et
al., 2006). With the cocaine unable to bind
this mutated DAT, these knock-in mice no
longer self-administered cocaine. This ob-
servation supports the hypothesis that DA
increases are necessary for the reinforcing
effects of cocaine. As a side note, a simi-
lar knock-in approach has identified the
GABAA receptor subtype containing the �1
subunit in VTA GABA neurons as the initial
target responsible for the addictive proper-
ties of benzodiazepines (Tan et al., 2010).
Amplification of GABAA receptors in VTA
GABA neurons leads to the disinhibition of
DA neurons, a cellular mechanism shared
with opioids, �-hydroxybutyrate, and can-

nabinoids [Fig. 1 (modified from Lüscher
and Ungless, 2006)]. By contrast, nicotine
can directly stimulate DA neurons, and psy-
chostimulants exert their effect by interfer-
ing with DA reuptake, as discussed above.
The DA hypothesis, therefore, is still rele-
vant and has received even more direct sup-
port from optogenetic manipulations of
VTA DA neurons, which confirmed that
their activation is sufficient to support self-
administration and conditioned place pref-
erence (Tsai et al., 2009; Adamantidis et al.,
2011; Lammel et al., 2012). Whether DA
neuron activity is also sufficient to drive
long-lasting adaptive behavior remains to
be explored.

Drug-evoked synaptic plasticity
While the requirement for increased DA
may explain the acute reinforcing effects
of addictive drugs, it does not provide an
explanation for craving and relapse. After
all, these key features of addiction mani-
fest long after the drugs have been cleared
from the brain. Given the established
modulatory role of DA on glutamatergic
and GABAergic transmission, the synaptic
trace of addictive drugs may actually be ex-
pressed at these synapses and not necessarily
involve a change in DA modulation. The ex-
perimental demonstration of such a trace
was achieved over a decade ago using a
clever ex vivo approach. Briefly, slices of the
VTA were prepared 1 d following a single
injection of cocaine and glutamatergic

transmission at AMPA receptor (AMPAR)
and NMDA receptor (NMDAR) was re-
corded in VTA DA neurons. Since the
number of synapses stimulated in this
preparation is beyond the control of the
experimenter, the ratio of AMPAR- and
NMDAR-mediated synaptic currents was
calculated and found to be increased after
the cocaine treatment (Ungless et al., 2001).

Subsequent investigations revealed
that this early drug trace can be observed
with all addictive drugs tested to date, in-
cluding ethanol, morphine, and nicotine,
but also amphetamines and benzodia-
zepines (Saal et al., 2003; Das et al., 2008;
Heikkinen et al., 2009). The plasticity was
also observed after a 2-h-long optogenetic
stimulation of the VTA DA neurons,
mimicking the increased firing typically
observed with a single dose of morphine
or nicotine (Brown et al., 2010). This in-
creased AMPA/NMDA ratio is due to an
enhanced AMPA transmission in conjunc-
tion of a decreased NMDA transmission.
The molecular expression mechanism
therefore involves a redistribution of
both AMPARs and NMDARs. While the
absolute number of AMPARs remains
unchanged (Mameli et al., 2007), the
GluA2-containing receptors at baseline
are exchanged for GluA2-lacking recep-
tors (Bellone and Lüscher, 2006; Argilli et
al., 2008).

At the same time, GluN3A-containing
NMDARs appear in exchange for GluN2A

Figure 1. The mesocorticolimbic dopamine system as an initial target of addictive drugs. The VTA, at the origin of the meso-
corticolimbic system, is composed of dopamine projection neurons that are under inhibitory control of GABA interneurons
(somtimes described as an independent nucleus at the tail of the VTA, the rostromedial tegmentum). The main targets are the NAc
and the mPFC. Addictive drugs cause an increase in mesocorticolimbic dopamine through three distinct cellular mechanisms:
direct activation of dopamine neurons (e.g., nicotine); indirect disinhibition of dopamine neurons [opioids, gamma-
hydroxybutyric acid (GHB), cannabinoids, and benzodiazepines]; as well as interference with dopamine reuptake (cocaine, ec-
stasy, and amphetamines). Note that the latter group also increases dopamine in the VTA itself, owing to the perturbation of the
reuptake of dendritically released dopamine (modified from Lüscher and Malenka, 2011, with permission).
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containing NMDARs, again leaving the
total number of NMDARs unchanged
(Yuan et al., 2013). After a single injection,
this plasticity persists for �1 week, after
which transmission is normalized. This
normalization requires the presence of
metabotropic glutamate receptor 1 (mGluR1)
receptors, which are located perisynaptically
and are most efficiently activated with a
short burst of activity. mGluR1 activation
engages mammalian target of rapamycin-
dependent local protein synthesis (Mameli
et al., 2007). Interestingly, mGluR1-
driven reinsertion of GluA2-containing
AMPARs has also been observed at synapses
in multiple brain areas (Clem and Huganir,
2010; McCutcheon et al., 2011), suggesting
a conserved mechanism for neurons to
eliminate GluA2-lacking AMPARs from the
synapse.

The case for a permissive metaplasticity
The complexity of the expression mecha-
nisms of drug-evoked synaptic plasticity
in the VTA indicates that the effect of
addictive drugs on the mesolimbic circuit
is not a straightforward potentiation of

transmission, but suggests a shift of syn-
aptic calcium signaling from NMDARs to
AMPARs (Creed and Lüscher, 2013). In
naive mice, glutamatergic transmission
can cause synaptic entry of calcium, pro-
vided the DA cell is depolarized, which
relieves the NMDARs from the magne-
sium block. In contrast, after cocaine
treatment, GluN3A-containing NMDARs
have a very low permeability for divalent
cations and are inefficient conductors of
calcium. In contrast, the GluA2-lacking
AMPARs readily conduct calcium. In fact,
owing to the inward rectification, the
greater the hyperpolarization, the more
calcium enters the cell. In other words, in
naive animals, the postsynaptic neurons
must be depolarized to engage calcium
signaling, whereas after cocaine adminis-
tration, hyperpolarization is required. As
a consequence, the rules for activity-
dependent potentiation of synaptic trans-
mission are inverted (Mameli et al., 2011).
This can be experimentally demonstrated
by using a spike timing-dependent potenti-
ation (STDP) protocol, where the postsyn-
aptic neuron receives either a depolarizing

or a hyperpolarizing current injection (Fig.
2). In slices from cocaine-treated animals,
depolarizing STDP was no longer able to
potentiate transmission; however, the po-
tentiation could be rescued by switching to a
hyperpolarizing STDP. Together, these
findings strongly suggest a permissive role
for this early form of drug-evoked synaptic
plasticity. In this sense, the AMPA and
NMDA receptor alterations induced
by drug exposure can be considered a
metaplasticity, enabling specific forms
of subsequent activity-dependent syn-
aptic plasticity.

Causal role of drug-evoked synaptic
plasticity in behavior
Establishing a causal relationship between
drug-evoked synaptic plasticity and drug-
adaptive behavior has been challenging, in
part because of the temporal discrepancy
between these two phenomena. A single
injection already leaves a synaptic trace
(discussed above) that lasts for �1 week
but may not drive many behavioral adap-
tations. Interestingly, a recent study using
retrograde tracing techniques has provided

Figure 2. Drug-evoked synaptic plasticity in dopamine neurons of the ventral tegmental area. Addictive drugs or strong stimulation of dopamine neurons causes a synaptic plasticity on the
excitatory afferents. This plasticity is expressed by the dual exchange of AMPA and NMDA receptors: GluA2-lacking AMPA receptors and GluN3A-containing NMDA receptors are inserted. As a
consequence calcium enters the postsynaptic cell more readily when the membrane is hyperpolarized, which inverts the rules for activity-dependent synaptic plasticity. At baseline, LTP is induced
when glutamate is released onto depolarized dopamine neurons (Hebbian LTP that is NMDAR dependent), while after cocaine exposure LTP can be observed when glutamate transmission coincides
with a hyperpolarization (anti-Hebbian LTP that is AMPAR dependent). Normal transmission is restored by the activation of mGluR1. Together, addictive drugs evoked a permissive metaplasticity
at excitatory afferents onto VTA dopamine neurons, which gate subsequent adaptations downstream (see text).
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information that the VTA DA neurons that
project to the nucleus accumbens (NAc) are
particularly prone to undergo drug-evoked
synaptic plasticity (Lammel et al., 2012).
These early forms of drug-evoked plasticity
are merely building blocks of circuit remod-
eling, which, after repetitive exposure, even-
tually lead to behavioral alterations. In line
with this interpretation, in mice where
NMDA receptors were selectively abol-
ished in DA neurons (DAT-Cre ERT2 �
GluN1flox; Zweifel et al., 2008), the behav-
ioral repercussions of drug exposure are
observed only after a delay and following
several injections. Specifically, reinstate-
ment of drug seeking was reduced, which
involves an extended circuitry including the
NAc (Engblom et al., 2008).

Further evidence for a stepwise remod-
eling of mesolimbic circuitry comes from
experiments suggesting a hierarchical or-
ganization of drug-evoked synaptic plas-
ticity between the VTA and the NAc.
Quick and efficient reversal of cocaine-
evoked plasticity in the VTA by local or
systemic application of a positive alloste-
ric modulator of the mGluR1 prevented
some drug-evoked synaptic adaptations
in the NAc (Mameli et al., 2009). Lesion
experiments and pharmacological manip-
ulations implicate connections to and
from the NAc in the integration of re-
warding drug effects and contextual envi-
ronmental cues (Sesack and Grace, 2010).
The crucial plasticity that presumably
mediates this integration occurs at the
excitatory afferents onto medium spiny
neurons (MSNs), which represent 95% of
neurons in the NAc and are an interface
between limbic and motor functions
(Mogenson et al., 1980). There are two
populations of MSNs that are divided into
two equal-sized classes depending on the
type of dopamine receptors (either D1R or
D2R) they express and their projection
sites (Gong et al., 2007). Both D1R MSNs
and D2R MSNs receive excitatory afferents
from the medial prefrontal cortex (mPFC),
the ventral hippocampus (vHippo), and the
basolateral amygdala (BLA; Papp et al.,
2012). Previous studies have attributed the
emotional valence to the BLA input (Cador
et al., 1989), which, when selectively stimu-
lated, is reinforcing (Stuber et al., 2011). The
activation of the mPFC-to-NAc projection
has been implicated in the initiation of ac-
tion and the actual seeking behavior, and
there is evidence linking the hypoactivity of
cortical projection neurons to compulsive
cocaine consumption (Chen et al., 2013).
Finally, the afferents from the vHippo
would code for the context (Sesack and
Grace, 2010). Regardless of the origin, syn-

aptic plasticity at glutamatergic transmis-
sion onto MSNs has been correlated with
cue-induced relapse to cocaine seeking
(Conrad et al., 2008). Given the proposed
functions of these specific inputs, cocaine
may evoke distinct forms of plasticity at ex-
citatory synapses onto MSNs, which would
contribute to specific components of adap-
tive behavior. What will be needed to
address this hypothesis is the selective ma-
nipulations at identified synapses (Fig. 3).
With the advance of cell type-specific opto-
genetic control of neuronal activity, such ex-
periments are now possible. The blueprint
for this approach consists of exposing the
animal to the drug, such that a drug-
adaptive behavior can be observed (e.g., re-
petitive injections of cocaine to cause
locomotor sensitization), and characteriz-
ing drug-evoked synaptic plasticity ex vivo
(e.g., potentiation of mPFC afferents onto
D1R MSNs). Since most forms of plasticity
can be reversed by an appropriate stimulation
protocol, the next step consists of finding a
protocol that can normalize transmission in
vitro(e.g.,1HzNMDAR-dependentdepoten-
tiation). This protocol can then be applied in
vivo after transfecting the appropriate up-
stream neurons and activating the afferent ax-
ons by terminal illumination (e.g., injection of
optogenetic effector channelrhodopsin-2 into
the mPFC shining light into the NAc) to test
the effect of depotentiation on drug-
adaptive behavior (e.g., erasure of sensitiza-
tion). A proof of principle study (Pascoli et
al., 2011) has shown that this approach is
feasible. Another example using this ap-
proach links incubation of craving to the
potentiation of excitatory transmission
from the amygdala to the NAc (Lee et al.
2013). Yet further experiments must be
performed to understand the role of
drug-evoked synaptic plasticity at iden-

tified synapses in other behavior (e.g.,
cue-induced cocaine seeking modeling
relapse).

The challenge of
individual vulnerability
One of the striking features of addiction is
only poorly understood: the individual
vulnerability. At equal levels of drug con-
sumption, some people readily lose con-
trol, while others maintain a controlled
recreational use for many years. Just think
of alcohol, a drug that is legal in many
countries that the overwhelming majority
of people can enjoy recreationally during
an entire adult lifetime without ever los-
ing control. This is also well documented
for nicotine and cannabis, and even holds
true for “harder” drugs such as amphet-
amines and cocaine, the latter leading to
addiction in �20% of regular users over a
span of �10 years (Wagner and Anthony,
2002). While several genetic variations
have been associated with drug use (Gold-
man et al., 2005), a causal relationship re-
mains to be established. Moreover, most
studies described above focus on generic
mechanisms that underlie the behavioral
changes, and little is known about the
neurobiology underlying individual vul-
nerability. One requirement is certain; in-
dividual vulnerability can be observed
only after prolonged drug exposure. This
requirement is not met in most animals
models presented above, which is why
behavioral pharmacology screens show
very little variability. However, pioneer-
ing work using SA for several months in
rats have demonstrated that animal-to-
animal variability can also be observed in
rodents (Deroche-Gamonet et al., 2004;
Vanderschuren and Everitt, 2004). In a
subsequent study, it has been argued that

Cocaine exposure
to induce drug-adaptive

behavior

Characterize drug-evoked 
synaptic plasticity ex vivo 

Design reversal 
protocol in vitro

Apply reversal 
protocol in vivo

Validate normalization
of synaptic

 transmission ex vivo

LTD induced by 1Hz
stimulation

Optogenetic stimulation of 
NAc afferents (1 Hz, 10 min)

Potentiation of excitatory
transmission onto D1R-MSNs 

Locomotor sensitization

Depotentiation of

Figure 3. Experimental blueprint to establish causal relationship between drug-evoked synaptic plasticity and drug-adaptive
behavior. In gray example experiments are from a proof-of-principle study (Pascoli et al., 2011). For further explanation see text.
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high impulsivity predicts the develop-
ment of addiction-like behavior in rats
(Belin and Everitt, 2008).

Emerging ideas for rational
addiction treatments
A more comprehensive understanding of
the precise nature of circuit remodeling
caused by addictive drugs resulting from
specific forms of drug-evoked synaptic plas-
ticity may help us to design novel rational
treatments for the human disease. Such
treatments may be pharmacological in na-
ture or use neuromodulatory approaches
such as deep brain stimulation or transcra-
nial magnetic stimulation (TMS). The for-
mer may target specific types of receptors
known to appear only after drug exposure,
such as the GluA2-lacking AMPARs or
the GluN3-containing NMDARs, but these
types of pharmacological interventions
are really only in their infancy. It may also
be possible to exploit and enhance the
physiological mechanism of reversing
drug-evoked synaptic plasticity. One area of
focus may be on the mGluR1 receptors,
which can reverse the redistribution of AM-
PARs and NMDARs.

Perhaps a more selective intervention
would be to target specific areas of the re-
ward circuitry, such as the NAc, with deep
brain stimulation. However, novel proto-
cols would have to be developed, as cur-
rent high-frequency stimulation (�100
Hz) is unlikely to affect plasticity. TMS
may have the appeal of being noninvasive.
If we succeed in determining the cortical
afferents undergoing drug-evoked synap-
tic plasticity to develop efficient reversal
protocols, TMS may emerge as a promis-
ing treatment option.

Ultimately, the understanding of drug-
induced plasticity at specific synapses
must be furthered to develop a therapy that
reverses plasticity and associated drug-
induced adaptive behavior. The goal is to
provide a cure for addiction and to prove
Aaron Sorkin wrong when he recounted in a
2012 interview with the W magazine:
“ . . . the hardest thing I do every day is not
take cocaine. You don’t get cured of addic-
tion—you’re just in remission.”
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Bellone C, Lüscher C (2006) Cocaine triggered
AMPA receptor redistribution is reversed in
vivo by mGluR-dependent long-term depres-
sion. Nat Neurosci 9:636 – 641. CrossRef
Medline

Bozarth MA, Wise RA (1981) Intracranial self-
administration of morphine into the ventral
tegmental area in rats. Life Sci 28:551–555.
CrossRef Medline

Brown MT, Bellone C, Mameli M, Labouèbe G,
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