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SUMMARY

Feeding satisfies metabolic need but is also
controlled by external stimuli, like palatability or
predator threat. Nucleus accumbens shell (NAcSh)
projections to the lateral hypothalamus (LH) are
implicated in mediating such feeding control, but
the neurons involved and their mechanism of action
remain elusive. We show that dopamine D1R-ex-
pressing NAcSh neurons (D1R-MSNs) provide the
dominant source of accumbal inhibition to LH and
provide rapid control over feeding via LH GABA
neurons. In freely feeding mice, D1R-MSN activity
reduced during consumption, while their optogenetic
inhibition prolonged feeding, even in the face of
distracting stimuli. Conversely, activation of D1R-
MSN terminals in LH was sufficient to abruptly stop
ongoing consumption, even during hunger. Direct
inhibition of LH GABA neurons, which received input
from D1R-MSNs, fully recapitulated these findings.
Together, our study resolves a feeding circuit
that overrides immediate metabolic need to allow
rapid consumption control in response to changing
external stimuli.

INTRODUCTION

The repertoire of feeding behavior is incredibly diverse and incor-

porates both flexible preparatory actions, like foraging, and

highly stereotyped consummatory responses, like mastication.

These behavioral sequences must be enacted at appropriate

times to fulfill homeostatic energy demands, but consumption

also must remain flexible to respond to immediate changes in

sensory or environmental conditions. For example, consumption

must stop rapidly when foul food is encountered or if predators

arise. Such behavior ensures survival, but in excess could lead

to anorexia and weight loss. Conversely, when nutritious and

palatable foods are found, prolonged consumption can occur

in the absence of any immediate metabolic need (Zheng et al.,

2009). Such feeding serves to accumulate useful energy stores,
but in many societies the constant availability of energy-dense

and palatable foods promotes overeating, leading to weight

gain and obesity (Kenny, 2011). Describing neural circuits that

can quickly override immediate metabolic need to control con-

sumption in response to changing external conditions repre-

sents a necessary step toward identifying causalities in eating

disorders and proposing rational treatments.

In the lateral hypothalamus (LH), peripheral and central signals

that influence food intake converge to generate an output to

midbrain motor pattern generators that subserve the behavioral

repertoire of feeding (Anand and Brobeck, 1951; Berthoud,

2004; Delgado and Anand, 1953; Fromentin et al., 2012; Hussain

and Bloom, 2013; Kelley et al., 2005b; Morgane, 1969; Schwartz

et al., 2000; Wise, 1974). The medial nucleus accumbens shell

(NAcSh), which integrates motivational and sensory input, pro-

jects to the LH (Thompson and Swanson, 2010; Mogenson

et al., 1983), and a series of studies spanning two decades

have revealed the importance of this pathway in the control of

food consumption (Berthoud, 2004; Kelley et al., 2005a). For

example, pharmacological inhibition of the NAcSh in rats and

mice triggers intense feeding of both palatable foods and stan-

dard chow and leads to neuronal activation in the LH, as de-

tected by expression of the immediate early gene c-Fos (Baldo

et al., 2004; Faure et al., 2010; Maldonado-Irizarry et al., 1995;

Reynolds and Berridge, 2001; Stratford and Kelley, 1999; Zheng

et al., 2003, 2007). Moreover, increased feeding following NAcSh

inhibition is prevented by concomitant infusion of a gamma-ami-

nobutyric acid type A (GABAA) receptor agonist into the LH (Mal-

donado-Irizarry et al., 1995; Urstadt et al., 2013). Consistent with

these pharmacological studies, unit recordings in freely feeding

rats have identified subpopulations of NAcSh neurons that

reduce their activity during feeding (Krause et al., 2010; Roitman

et al., 2010; Tellez et al., 2012) and that shift to increased firing

when animals are presented with aversive conditioned food

(Roitman et al., 2010).

From these studies, a model has been proposed in which

inhibitory projections from the NAcSh to the LH serve as a sen-

sory sentinel, allowing rapid control over food consumption in

response to motivational or sensory signals (Baldo and Kelley,

2007; Kelley et al., 2005b). However, this circuit has not been

resolved at the cellular level and its temporal dynamics have

not been characterized. For instance, NAcSh inhibitory projec-

tion neurons can be classified into two distinct populations
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Figure 1. D1R-MSNs Provide Dominant

Accumbal Output to LH

(A) Schematic for CTB tracing is shown.

(B) Representative confocal images from NAcSh,

11 days after CTB injections in LH, are shown.

Scale bar, 50 mm.

(C) Charts show the proportion of CTB-labeled cells

in NAcSh colocalizing with D1R-tdTomato (left) or

Drd2-eGFP (right).

(D) Schematic for optogenetic circuit mapping is

shown.

(E) Example ex vivo whole-cell recordings from LH

neurons, showing 4-ms blue light-evoked inhibitory

postsynaptic currents (IPSCs) blocked by picro-

toxin (PTX, 50 mM, black trace), and connectivity

charts are shown. Scale, 200 pA, 20 ms.

See also Figures S1 and S2.
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according to the dopamine receptor they express (Bocklisch

et al., 2013; Gangarossa et al., 2013), but the dopaminergic re-

ceptor identity of NAcSh neurons projecting to the LH is not

known (Heimer et al., 1991; Mogenson et al., 1983; Sano and Yo-

koi, 2007; Zhang et al., 2013). Second, pharmacological manip-

ulations, electrical stimulation, and unit recordings have lacked

the temporal resolution or cell type specificity required to provide

a causal link between activity in identified NAcSh-to-LH projec-

tion neurons and the control over moment-to-moment food

intake. Finally, the LH contains an array of neurons that express

different neuropeptides and neurotransmitters (Schöne and Bur-

dakov, 2012), but the molecular identity of LH neurons receiving

inhibitory input from the NAcSh has not been described (Heimer

et al., 1991;Mogenson et al., 1983; Sano and Yokoi, 2007; Zheng

et al., 2007).

To address these issues, we established a paradigm in which

food consumption could be monitored on a moment-to-moment

basis in genetically modified mice, permitting the observation

and control of identified cell types. We found that NAcSh D1R-

MSNs provide the major source of accumbal inhibition to the

LH and reduce their activity during food consumption. Inhibition

of D1R-MSNs prolongs feeding in sated mice and even in the

face of distracting external stimuli. Conversely, activation of

D1R-MSN terminals in LH is sufficient to override immediate

metabolic need and rapidly stop food consumption despite hun-

ger. These findings were recapitulated by the direct inhibition of

LH GABA neurons, which receive inhibition from D1R-MSNs.

RESULTS

D1R-MSNs Provide Dominant NAcSh-to-LH Inhibition
To determine themolecular identity of NAcSh neurons projecting

to the LH, we first performed a retrograde tracing study, with in-
2 Neuron 88, 1–12, November 4, 2015 ª2015 Elsevier Inc.
jections of cholera-toxin subunit B (CTB)

conjugated to a fluorescent dye into the

LH of transgenic mice that permit identifi-

cation of D1R- and D2R-MSNs (Figures

1A–1C). Injections were focused to the

peduncular part of the LH, just lateral to

the fornix and ventral to the zona incerta
(Figures S1A and S1B; Paxinos and Franklin, 2008). Then,

11 days after the injection, coronal slices containing NAcSh

were prepared to visualize colocalization of CTB with identified

MSNs. Consistent with other neuroanatomical reports (Thomp-

son and Swanson, 2010), prominent CTB labeling was seen in

the medial NAcSh (Figure S1C). Few labeled cells were found

in the NAcSh when CTB injections were made more medially

into the anterior hypothalamic area (between the ventricle and

the fornix) or more dorsal to the nigrostriatal tract (data not

shown).

In Drd1a-tdTomato mice (n = 3), a total of 1,246 CTB-contain-

ing cells (i.e., LH-projecting cells) were counted across the

rostro-caudal extent of medial NAcSh. Of these cells, 1,173

(93.6% ± 0.8%, grouped mean ± SEM) were positive for

tdTomato, identifying them as D1R-MSNs (Figures 1B and 1C).

Notably, 60.3% ± 7.7% of D1R-MSNs did not express CTB,

likely reflecting cells that project outside of the LH (Bocklisch

et al., 2013; Kupchik et al., 2015) or that the injection of CTB

into the LHwas unable to seed the entirety of this large structure.

At the most rostral and most caudal NAcSh sites, the majority of

LH-projecting neurons were identified as D1R-MSNs (minimum

89.7%; Figure S1D). However, in the bed nucleus stria terminalis

(BNST), which lies caudally to the NAcSh and inhibits LH gluta-

mate neurons to increase food intake (Jennings et al., 2013),

only a minority of LH-projecting neurons were positive for

tdTomato (for dorsal BNST, grouped mean ± SEM, 15.1% ±

3.1%; for ventral BNST, 22.8%± 3.5%, n = 5; Figure S2). Consis-

tent with findings in Drd1a-tdTomato mice, in Drd2-eGFP ani-

mals (n = 2), a total of 593 CTB-positive cells were counted in

the NAcSh, with only 29 cells (5.2% ± 1.1%, grouped mean ±

SEM) positive for eGFP (Figures 1B and 1C). Taken together,

these tracing studies show that the dominant projection from

NAcSh to LH comprises D1R-MSNs.
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Figure 2. D1R-MSNs Reduce Firing during

Food Consumption

(A) Schematic of in vivo unit recordings and

recording sites (right; millimeters from bregma)

(Paxinos and Franklin, 2008) is shown.

(B) Example light-responsive unit in D1RCre+

mouse (i.e., D1R-MSN). Peri-stimulus time histo-

gram (PSTH) shows single-unit activity and mean

spike waveform (inset; scale, 200 ms, 100 mV) prior

to and during 1-s continuous blue light stimulation.

Bin size, 50 ms.

(C) For the same unit shown in (B), PSTH of activity

aligned to consumption onset (left) and offset

(right). Activity tended to reduce during onset

(p = 0.07,Wilcoxon rank-sum test) and significantly

increased during lick offset (p < 0.05). Bin size,

250 ms.

(D) Plot of all recorded units in D1RCre+ mice ac-

cording to significance level (Wilcoxon rank-sum

test) of activity change during lick offset versus

onset is shown.

(E) As for (C), except for a light-responsive unit

obtained from aD2RCremouse. Activity of this unit

did not change across lick onset or offset.

(F) As for (D), but units obtained from D2RCre mice

are shown.

See also Figure S3.
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To explore the functional nature of the NAcSh-to-LH connec-

tion, an optogenetic-assisted circuit mapping approach was

employed. First, the blue light-activated cation channel, chan-

nelrhodopsin (ChR2(H134R)), was expressed in D1R- or D2R-

MSNs by injecting an adeno-associated virus (AAV) harboring

a floxed-ChR2(H134R) construct into the NAcSh of D1RCre or

D2RCre mice, respectively (Figures 1D and 1E). After 2 weeks,

allowing time for ChR2(H134R) expression, acute coronal brain

slices containing LH were prepared for ex vivo electrophysi-

ology recordings. Cells in the LH were randomly patched while

monitoring blue light-evoked inhibitory postsynaptic currents

(IPSCs) derived from D1R-MSN or D2R-MSN afferents. We

observed that few ChR2(H134R)-eYFP-expressing fibers were

present in the LH of D2RCre mice compared to D1RCre mice

(Figure 4B). In D1RCre mice, light-evoked postsynaptic cur-

rents could be recorded in 56% of LH neurons (15 of 27 neu-

rons, n = 3 mice; mean amplitude ± SEM, 630 ± 334 pA) that

were blocked with picrotoxin (Figure 1E). This finding is consis-

tent with previous in vivo recordings in rats, where 52.5% of

subpallidal neurons received accumbal inhibition (Mogenson

et al., 1983). By comparison, only 17% of LH neurons received

inhibition from NAcSh D2R-MSNs (5 of 29 neurons, n = 3 mice;

mean amplitude ± SEM, 177 ± 79 pA). Taken together, these

data support neuronal tracing studies to show that D1R-

MSNs comprise the dominant source of accumbal inhibition

to the LH.
Neuron 88, 1–1
D1R-MSN Inhibitions Permit Food
Consumption
Following our neuroanatomical data and

based on prior descriptions of NAcSh-

to-LH circuitry (Berthoud, 2004; Kelley
et al., 2005a; Krause et al., 2010; Roitman et al., 2010; Tellez

et al., 2012), we predicted that D1R-MSN activity would reduce

during food consumption, thus relieving inhibition from down-

stream LH neurons to authorize feeding. To test this prediction,

we undertook in vivo unit recordings of optogenetically identified

NAcSh D1R-MSNs in mice that were freely feeding a palatable

liquid fat solution from a sipper tube (5% v/v Lipofundin in water;

Figures 2A–2D and S2). Licks on the sipper tube were recorded

with a lickometer, allowing the onset and offset of individual

feeding events, termed bursts, to be monitored with high tempo-

ral resolution.

Consistent with a permissive role in food intake control,

the majority of optogenetically identified NAcSh D1R-MSNs

reduced their activity during consumption onset (n = 5/9, p <

0.05 and n = 2/9, p < 0.1; Wilcoxon rank-sum test) and increased

their activity concomitantly with consumption offset (n = 8/9,

p < 0.05) (Figures 2B–2D and S3B). Non-light-responsive units

(n = 2) showed no change in activity in relation to consumption

onset or offset (Figures 2D, S3B, and S3C). We also recorded

units that were inhibited by blue light (n = 4; Figures 2D, S3B,

and S3D). Half of the light-inhibited units reduced activity during

feeding onset and increased activity with feeding offset (p <

0.05), while the remaining units showed no change in activity dur-

ing consumption onset. While we cannot be certain as to the

identity of light-inhibited units, this response most likely arose

from local recurrent collateral inhibition, which, in the dorsal
2, November 4, 2015 ª2015 Elsevier Inc. 3
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B C Figure 3. D1R-MSNs Inhibitions Prolong

Food Intake

(A) Schematic of experiment, with representative

image of eArch-3.0-eYFP infection in a D1RCre+

mouse (orange line shows fiber tract; scale, 1 mm).

Ex vivo, whole-cell recording from NAcSh eYFP+

neuron is superimposed, with inhibition of current

evoked spiking by orange light shown (scale,

20 mV, 200 ms; RMP, �92 mV).

(B) Food intake is shown across time (left; orange

segments show light on), together with total intake

(right), as a function of activity in light-on blocks

divided by the light-off blocks. yANOVA, condition

(D1RCre-, D1RCre+) 3 light (off, on) interaction,

F(1,19) = 5.55, p < 0.05.

(C) Schematic of stimulus distraction test is shown.

(D) Example lick histograms from distraction test

are shown.

(E) As is shown for (B), except for the distraction

test. yANOVA, condition 3 light interaction,

F(1,19) = 8.36, p < 0.01.

(F) Frequency distribution of three-lick bursts. #p <

0.025, non-paired, two-tailed t test (Bonferroni

correction), following ANOVA, condition 3 light

interaction, F(1,19) = 16.55, p % 0.001.

(G–I) As for (D)–(F), except that eArch-3.0-eYFP

was expressed in D2R NAcSh neurons (D2RCre+

mice).

*p < 0.05, **p < 0.01, non-paired, two-tailed t test.

Error bars, SEM. See also Figures S4 and S6.
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striatum, is most common within D1R- or D2R-MSNs than

between D1R- andD2R-MSNs (Taverna et al., 2008). To contrast

the activity of D1R-MSNs, we repeated in vivo unit-recording

experiments in optogenetically identified D2R-expressing

NAcSh neurons (D2RCre+ mice; Figures 2E, 2F, S3E, and

S3F). D2R-expressing neurons did not reliably change activity

in line with consumption onset (smallest p = 0.33 for n = 3/4, Wil-

coxon rank-sum test) or offset (smallest p = 0.08 for n = 4/4).

Taken together, unit-recording data suggest that NAcSh D1R-

MSN activity reductions were key for allowing food intake, while

D1R-MSN activity increases serve to stop and shift behavior

away from feeding.

Since the observed reductions in D1R-MSN activity that paral-

lel food consumption are only correlational, we sought causal

evidence by asking first if discrete photoinhibition of NAcSh

D1R-MSNs could promote feeding. The orange light-gated

inhibitory proton pump, eArch-3.0, was virally expressed in

D1R-MSNs and fiber optics implanted targeting the NAcSh

(Figures 3A and S6A). Whole-cell recordings of infected NAcSh

neurons ex vivo confirmed that orange light illumination inhibited

action potentials normally evoked by positive current injection

(Figure 3A). In ad-libitum-fed D1RCre+ mice, orange light illumi-

nation of the NAcSh significantly increased liquid fat intake,

compared to Cre� littermates that did not express eArch-3.0

(Figure 3B). Thus, a reduction in NAcSh D1R-MSN activity was

sufficient to promote palatable food consumption, even when

there was no immediate metabolic need to feed.
4 Neuron 88, 1–12, November 4, 2015 ª2015 Elsevier Inc.
We further questioned whether D1R-MSNs could fulfill the role

of sensory sentinel previously ascribed to the NAcSh (Kelley

et al., 2005a), by rapidly adjusting food intake in response to

changing external conditions. To this end, we combined

eArch-3.0-mediated optogenetic inhibition experiments with an

unexpected stimulus distraction test (Figures 3C–3F). During

alternating 10-min blocks of a 1-hr fat consumption session,

feeding burst initiation was monitored in real time and triggered

the presentation of a brief distractor stimulus (i.e., three consec-

utive licks, with interlick intervals (ILIs) of %1 s, triggered a

500-ms auditory/visual stimulus; Figure 3C). In control mice,

the distractor stimulus was efficient in rapidly stopping ongoing

consumption from one lick to the next, as shown by an increase

in the frequency of bursts comprising only three licks (Figures

3D–3F). However, photoinhibition of D1R-MSNs led to a signifi-

cant reduction in the efficiency of the distractor stimulus to

stop ongoing feeding (Figures 3D–3F). To explore whether this

result was unique to D1R-MSN inhibition, stimulus distraction

experiments were repeated, but now with eArch-3.0-mediated

inhibition of D2R-expressing NAcSh neurons (Figures 3G–3I

and S4). As expected from the non-reactivity of these cells in

unit-recording observations, photoinhibition of D2R-expressing

NAcSh neurons did not alter the efficiency of a distractor stim-

ulus to stop ongoing feeding (Figures 3G–3I).

Collectively, these data show that reductions in NAcSh

D1R-MSN activity are permissive for feeding and suggest that

increases in D1R-MSN activity are required to rapidly stop and
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Figure 4. Activation of D1R-MSN Terminals

in LH Rapidly Stops Feeding

(A) Schematic of experiment is shown.

(B) Example images of NAcSh ChR2(H134R)-eYFP

infections (top; scale, 1 mm). Photocurrents in

response to 300-ms blue light stimulation, recorded

ex vivo from infected NAcSh neurons are super-

imposed (scale, 100 pA, 100 ms). Prominent fiber

terminals are seen in the LH of D1RCre and

GADCre, but not D2RCre mice (bottom; arrowhead

indicates LH; scale bar, 500 mm).

(C) Food intake across time (blue segments show

light on) is shown. yp < 0.01, ANOVA, condition

(Cre+, Cre�) 3 light (off, on) interaction. Note mice

were fed ad libitum.

(D) Total intake is shown, as a function of activity

in light-on blocks divided by the light-off blocks.

***p % 0.001, non-paired, two-tailed t test.

(E) Schematic for closed-loop optogenetic experi-

ment (mice fed ad libitum) is shown.

(F) Example lick histograms from closed-loop op-

togenetic test are shown.

(G) Frequency of three-lick bursts during light-off

and -on periods. #p < 0.025, non-paired, two-tailed

t test (Bonferroni correction), following ANOVA,

condition3 light interaction, F(1,19) = 6.26, p < 0.05.

Error bars, SEM. See also Figures S5 and S6.
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shift behavior away from consumption in response to salient

external stimuli.

D1R-MSN Projections to the LH Authorize Feeding
Thus far, D1R-MSNs were observed and manipulated at the so-

matic level in NAcSh. If D1R-MSN activity was causally related

to feeding owing to downstream inhibition in the LH, then this

could be demonstrated in two ways. First, forcing activation

of NAcSh D1R-MSN terminals in the LH should be sufficient

to prevent consumption from occurring, even during hunger.

Second, in line with findings from the stimulus distraction

test, activation of D1R-MSN terminals in the LH should be

sufficient to rapidly stop ongoing feeding from one moment to

the next.

To test the first prediction, ChR2(H134R) was expressed

selectively in NAcSh D1R-MSNs with implanted fiber optics

now targeting D1R-MSN terminals in the LH (D1RCre mice; Fig-

ures 4A, 4B, and S6C). Blue light stimulation (20 Hz, 4-ms

pulses) of D1R-MSN terminals in the LH strongly suppressed

fat intake in ad-libitum-fed D1RCre+ mice, compared to Cre�
littermate controls that did not express ChR2(H134R) (Figures

4C and 4D). This effect was not specific to fat, as optogenetic

stimulation of D1R-MSN terminals in the LH also suppressed

liquid sucrose consumption in a separate cohort of mice (Fig-

ures S5A, S5B, and S6F). Importantly, blue light stimulation
Neuron 88, 1–1
also was efficient to suppress fat intake

in mice that were food deprived for 24 hr

prior to the test (Figure S5C). Thus, activa-

tion of D1R-MSN terminals in the LH is

sufficient to suppress food intake, even

despite a state of hunger.
Since neuronal tracing identified a small proportion of NAcSh

neurons projecting to the LH as D2R-MSNs (Figure 1), we exam-

ined whether stimulating D2R-MSN terminals in the LH would,

nevertheless, be sufficient to alter feeding. Behavioral optoge-

netic experiments were repeated but now with stimulation of

ChR2(H134R)-infected NAcSh D2R-MSN terminals in the LH

(D2RCre mice; Figures 4A–4D and S6D). Optogenetic stimula-

tion of D2R-MSN terminals in the LH during 10-min periods

had no effect on food consumption in ad-libitum-fed mice (Fig-

ures 4A–4D).

As an additional control, optogenetic experiments were

repeated in a mouse line that allowed stimulation of all

GABAergic NAcSh projections to the LH (GADCre mice; Figures

4A–4D and S6E). Mimicking results with stimulation of D1R-MSN

terminals in the LH, blue light stimulation of all inhibitory NAcSh

projections to the LH suppressed feeding in ad-libitum-fed

GADCre+ mice compared to Cre� controls (Figures 4C and

4D). Collectively, these experiments add functional relevance

to neuronal tracing and in vivo unit-recording data by demon-

strating causality between the activity of D1R-MSNs projecting

to the LH and rapid consumption control in a manner that can

override immediate metabolic need.

Would activation of the D1R-MSN-to-LH pathway also be suf-

ficient to rapidly stop the highly stereotyped action of licking

once food consumption had been initiated, akin to the effect
2, November 4, 2015 ª2015 Elsevier Inc. 5
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Figure 5. Accumbens Inhibits Non-orexin-A

and Non-MCH Neurons in LH

(A) Schematic of experiment. Note non-floxed

ChR2 was expressed in wild-type mice.

(B) Example traces (average of 20 sweeps) from a

not-connected LH neuron, not responding to blue

light (23 4-ms duration, 50-ms interval; top), and a

second connected neuron where blue light evoked

postsynaptic currents (bottom) that were sensitive

to picrotoxin (PTX; 50 mM; black trace) are shown.

Scale, 20 ms, 200 pA. Stimulation artifacts were

removed.

(C) The location of connected (red dots) and

not-connected (blue dots) biocytin-filled neurons

across the rostro-caudal extent of the LH. Sections

were redrawn from Paxinos and Franklin (2008).

(D) Example images of not-connected biocytin-

filled neurons (left) that were also positive for MCH

(top) or orexin-A (bottom) and connected neurons

(right) that were negative for MCH or orexin-A. In-

serts show processes that made appositions with

nearby MCH- or orexin-A-positive neurons. Scale

bars, 50 mM.

(E) Summary connectivity charts for filled neurons

stained against MCH (top) or orexin-A (bottom) are

shown.
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seen with an external distractor stimulus? To test this possibility,

we developed a closed-loop optogenetic intervention in which

feeding burst initiation was monitored in real time and now trig-

gered brief blue light stimulation of D1R-MSN terminals in the

LH (i.e., three consecutive licks, with ILIs % 1 s, triggered a

500-ms train of blue light; 20 Hz, 4-ms pulse; Figure 4E). This

intervention was restricted to 10-min light-on periods, which

alternated with 10-min light-off periods. The frequency of

three-lick bursts significantly increased during the light-on

period in D1RCre+ mice versus controls, confirming that brief

activation of D1R-MSN terminals in the LH was sufficient to

rapidly inhibit consumption from one lick to the next (Figures

4E–4G). Delivering only a single 4-ms pulse following burst

initiation had no effect on the frequency of three-lick bursts

(Figures S5D–S5F), suggesting that relatively sustained inhibition

of LH neurons is required to stop ongoing feeding. The ability

of this discrete manipulation to interrupt the highly stereotyped

motor action of licking exemplifies the tight control that NAcSh

D1R-MSNs projecting to the LH exert over consummatory

behavior.
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NAcSh Targets Non-MCH and Non-
orexin LH Neurons
Which LH neurons receive inhibition from

the NAcSh? To address this question,

we again adopted an unbiased optoge-

netic-assisted circuit-mapping approach,

monitoring light-evoked IPSCs in LH

neurons derived from NAcSh afferents

expressing non-floxed ChR2 (Figure 5).

On this occasion, biocytin was added to

the recording pipette to allow subsequent

localization and immunohistochemical
identification of recorded neurons. Initially, we screened for

neurons containing the peptides orexin/hypocretin or melanin-

concentrating hormone (MCH), since their activity is largely

associated with promoting feeding (de Lecea et al., 1998; Qu

et al., 1996; Sakurai et al., 1998).

Using this method, a total of 62 LH neurons in wild-type mice

were labeled with biocytin, of which 29 (47%) received light-

evoked IPSCs from NAcSh afferents (connected cells; Fig-

ure 5B). Connected neurons were distributed throughout the

rostro-caudal extent of the LH and were intermingled with non-

connected neurons (Figure 5C). Biocytin-labeled neurons

(n = 25) were stained against MCH (Figures 5D and 5E). Of these

neurons, 14 were connected, but none of these were positive for

MCH. Only two neurons were positive for MCH, but these were

not connected. Another 27 biocytin-labeled neurons were

stained against orexin-A to identify orexin/hypocretin cells (Fig-

ures 5D and 5E). Of these neurons, ten were connected, but

none of these were positive for orexin-A. Only one neuron was

identified as positive for orexin-A, but it was not connected.

Notably, some connected neurons were observed to make
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Figure 6. D1R-MSNs Inhibit LH GABA Neurons to Rapidly Stop Feeding

(A) Schematic for cell-type-specific circuit mapping, with example image of LH preparation (right; scale bar, 200 mM). Note non-floxed ChR2was expressed in the

NAcSh of VGATCre+ mice.

(B) Example whole-cell recording from connected, identified LH VGAT neuron in response to blue light stimulation of NAcSh afferents (2 3 4-ms pulse, 50-ms

interval; scale, 20 ms, 200 pA) and connectivity chart are shown.

(C) Schematic for modified rabies tracing is shown.

(D) Representative confocal image shows a starter neuron in LH (*, top), with image from the control hemisphere (bottom), taken in the same slice and with the

same imaging settings. Scale bars, 20 mm.

(E) Representative image of an EGFP-labeled neuron in NAcSh, which is also positive for tdTomato (i.e., D1R-MSN; scale bar, 20 mm) and summary colocalization

chart (quantification from n = 2 mice) are shown.

(F) Example image of LH eArch-3.0-eYFP infection in a VGaTCre+ mouse (red line shows fiber tract; scale, 1 mm). Zoom shows eYFP+ LH neurons (right;

indicated by arrowheads; scale bar, 50 mM). Ex vivo, whole-cell recording from LH eYFP+ neuron showing orange light inhibition of positive current-evoked

spiking (bottom; scale 20 mV, 200 ms).

(G) Food intake is shown across time (left; orange segments indicate light on), with total intake as a function of activity in light-on blocks divided by light-off blocks

(right). yANOVA, condition (control, eArch-3.0) 3 light (off, on) interaction, F(1,9) = 8.64, p < 0.05. **p < 0.01, non-paired, two-tailed t test.

(H) Example lick histograms from a single VGaTCre+ mouse undertaking closed-loop optogenetic experiments are shown.

(I) Frequency distribution of three-lick bursts during the light-off and -on periods, in control and test (eArch-3.0) sessions, is shown. #p < 0.025, paired, two-tailed t

test (Bonferroni correction), following ANOVA, condition 3 light interaction, F(1,9) = 86.6, p < 0.001.

Error bars, SEM. See also Figure S6.
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appositions with nearbyMCH- or orexin-A-positive neurons (Fig-

ure 5D), suggesting that connected LH neurons may serve as an

additional gate between MCH and orexin/hypocretin neurons

and accumbal input (Sano and Yokoi, 2007). Thus, our findings

point to other LH cell types as the major target of NAcSh

inhibition.

D1R-MSNs Inhibit LH GABA Neurons
LH neurons that increased their calcium activity during feeding of

high-fat chow, grain-based chow, or calorie-dense liquid were

marked by expression of the vesicular GABA transporter
(VGaT) (Jennings et al., 2015). Similarly, stimulation of LH

GABA neuron terminals in the ventral tegmental area (VTA)

increased intake of moist chow and generated maladaptive

consummatory behavior (Nieh et al., 2015). We therefore postu-

lated that direct inhibition of LH GABA neurons could provide

one mechanism through which D1R-MSNs rapidly control food

consumption.

To examine whether LH GABA neurons received accumbal

inhibition, LH neurons of VGATCre+ mice were tagged with a vir-

ally expressed, floxed fluorescent reporter protein and NAcSh

afferents were infected with non-floxed ChR2 (Figure 6A). This
Neuron 88, 1–12, November 4, 2015 ª2015 Elsevier Inc. 7
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preparation allowed selective targeting of LH GABA neurons for

ex vivo whole-cell recordings, while simultaneously monitoring

light-evoked IPSCs derived from NAcSh afferents. Of all LH

GABA neurons recorded, 78% were connected (28 of 36 cells;

n = 3 mice; mean amplitude ± SEM of 803 ± 217 pA; Figure 6B),

suggesting enriched targeting of this LH neuronal population by

accumbens.

While this preparation revealed functional inhibition from

NAcSh to LH GABA neurons, it could not be used to selectively

restrict ChR2 expression to D1R- or D2R-MSNs, as Cre was ex-

pressed in all VGaT neurons. To circumvent this problem, we

generated a new mouse line that allowed selective targeting of

LH GABA neurons together with identification of D1R-MSNs in

the same animals (VGaTCre 3 Drd1a-tdTomato mice). In these

mice, we performedmodified rabies tracing to identify monosyn-

aptic inputs from NAcSh onto LH GABA neurons (Figure 6C).

First, the Cre-inducible avian sarcoma leucosis virus glycopro-

tein EnvA receptor (TVA) and rabies virus envelope glycoprotein

(RG) were targeted unilaterally to LH GABA neurons (Figures 6C

and 6D), allowing rabies virus infection and monosynaptic retro-

grade transport, respectively, from these starter neurons (Jen-

nings et al., 2013; Watabe-Uchida et al., 2012; Wickersham

et al., 2007). Then, 2 weeks later, the modified rabies virus

SADDG-EGFP(EnvA) was injected unilaterally into the LH and

1 week later slices of NAcSh were prepared for confocal imag-

ing. EGFP-labeled neurons with spiny morphologies were pre-

sent in NAcSh (Figure 6E), confirming a monosynaptic projection

fromMSNs to LH GABA neurons. Moreover, 97% of these EGFP

neurons also were positive for tdTomato, identifying them as

D1R-MSNs (Figure 6E). Taken together, these studies demon-

strate monosynaptic inhibition from NAcSh D1R-MSNs to LH

GABA neurons.

If activating inhibitory NAcSh D1R-MSN projections in the LH

is sufficient to stop food consumption, then this finding should

be recapitulated by direct inhibition of the relevant postsynaptic

target cell type in the LH. Indeed, after 24 hr of food deprivation,

direct inhibition of LH GABA neurons, achieved by photoactiva-

tion of eArch-3.0 selectively in LH VGaT+ cells, was sufficient to

suppress liquid fat consumption (Figures 6F, 6G, and S6G).

Moreover, using our closed-loop optogenetic intervention, brief

photoinhibition (500 ms) of LH GABA neurons also was suffi-

cient to rapidly stop ongoing consumption from one lick to

the next (Figures 6H and 6I). These findings thus fully replicated

effects on feeding behavior observed following stimulation of

D1R-MSN terminals in the LH. Therefore, while these experi-

ments do not formally exclude the contribution of D1R-MSN

collaterals to other structures in feeding control (such as the

ventral pallidum [VP]), they demonstrate sufficiency of LH

GABA neuron inhibitions to effectuate NAcSh D1R-MSN

output.

Collectively, these data add to a growing body of literature

recognizing the importance of LH GABA neurons in controlling

consummatory actions (Jennings et al., 2015; Nieh et al.,

2015), most likely irrespective of a foods nutritional content or

palatability, and they suggest that inhibition from upstream

D1R-MSNs provides critical temporal control over when

consummatory actions should start and stop in response to

changing external stimuli.
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DISCUSSION

Building on a long-standing observation that the NAcSh-to-LH

pathway regulates feeding (Baldo et al., 2004; Berthoud, 2004;

Faure et al., 2010; Kelley et al., 2005a; Maldonado-Irizarry

et al., 1995; Reynolds and Berridge, 2001; Stratford and Kelley,

1999; Urstadt et al., 2013; Zheng et al., 2003), our study identified

D1R-MSNs as the major route through which consumption con-

trol is conveyed between these neural nodes. Using in vivo

recordings, we found that NAcSh D1R-MSN activity reduces

during food intake and increases concomitant with feeding

cessation. With optogenetics, we demonstrated causality be-

tween the activity of D1R-MSNs and rapid consumption control.

Finally, we identified inhibition of LH GABA neurons by D1R-

MSNs as an important mechanism allowing for temporally pre-

cise regulation of consummatory actions. Taken together, our

data both advance and provide critical support for the notion

that NAcSh serves as a sensory sentinel over food consumption

(Kelley et al., 2005b).

The focus of this report was on output fromNAcSh to LH; how-

ever, accumbal D1R-MSNs also project to other brain areas

including the VP (Kupchik et al., 2015) and the VTA (Bocklisch

et al., 2013). Accumbal output to the VP has been well described

in relation to feeding (Stratford and Wirtshafter, 2012), although

little is known about the discrete functions of D1R- or D2R-

MSNs in this pathway. One possibility is that D1R-MSN projec-

tions to the VP perform a similar function to those that project

to the LH. Indeed, single-axon tracing suggests that accumbal

neurons with terminal fields in LH also may give off collaterals

to the VP (Tripathi et al., 2010). Alternatively, neurons from the

NAcSh to the VP may specialize in hedonic processing related

to feeding, a function that seems particular for the VP rather

than the LH (Cromwell and Berridge, 1993). Understanding the

complete molecular identity of NAcSh postsynaptic partners in

the VP and to what extent functional collaterals exist between

the VP- and LH-projecting MSNs will go some way to resolving

this circuit. Regarding the VTA, could D1R-MSN projections to

this structure be responsible for the effects on feeding that we

report here? We think this is unlikely for two reasons. First,

neuroanatomical reports indicate that, compared to the LH, the

VTA represents a relatively minor output from medial NAcSh

(Thompson and Swanson, 2010). Second, direct activation of

VTA GABA neurons, of which over 87% receive accumbal inhibi-

tion (Bocklisch et al., 2013), actually stops food consumption

(van Zessen et al., 2012). These result stands in opposition to

our findings, whereby reducing D1R-MSN activity serves to pro-

mote feeding. Thus, we favor D1R-MSN projections to the LH,

rather than the VTA, as a key output pathway relevant for con-

sumption control.

Functional gradients across the rostro-caudal extent of the

NAcSh have been described. For example, microinfusions of

AMPAR antagonists that generate appetitive feeding in the

rostral NAcSh require D1R signaling, while the same treatment

in caudal NAcSh generates fear and requires both D1R and

D2R signaling (Richard and Berridge, 2011). Such gradients

could reflect divergent input-output relationships between

rostral and caudal NAcSh. However, in our tracing study, the

dominant NAcSh projection to the LH comprised D1R-MSNs
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at both the most rostral and most caudal sites. Surprisingly, in

the BNST, which lies in continuity with caudal NAcSh, the dopa-

mine receptor expression of LH projection neurons flipped, with

only a minority of these neurons expressing D1Rs. This finding

could offer one account for functional differences between

studies of rostral and caudal NAcSh, which also may incorporate

anterior aspects of BNST. Moreover, the differential expression

of D1Rs on LH projections from NAcSh versus BNST provides

further understanding as to how these two inhibitory pathways

play opposite roles in food intake control (Jennings et al., 2013).

In addition to food consumption, the NAcSh has been appreci-

ated for its role in other motivated behaviors, including condi-

tioned reinforcement, Pavlovian-to-instrumental transfer and

instrumental response selection (Cardinal et al., 2002), hedonic

reactivity (Faure et al., 2010), taste aversion (Roitman et al.,

2010), fear (Reynolds and Berridge, 2001), psychomotor sensiti-

zation (Smith et al., 2013), pair bonding (Aragona et al., 2006), and

social play (van Kerkhof et al., 2014). Given the substantial nature

of theNAcSh-to-LH projection, its function likely extends beyond

only consumption control. Indeed, calcium imaging of LH GABA

neurons has identified functionally diverse subpopulations (Jen-

nings et al., 2015), and we find that most LH GABA neurons

receive inhibition from the accumbens. Large population-based

recordings will be required to fully appreciate how diverse moti-

vated behaviors are encoded by populations of NAcSh neurons.

Nevertheless, moving forward, a conceptual view of the NAcSh-

to-LH projection that incorporates our present observations is

one that enables rapid switching between different behavioral

states in response to changing external conditions.

There is a clear evolutionary requirement for neuronal circuits

that can prolong or quickly stop feeding, despite immediate

metabolic demands (Morton et al., 2014). However, in many so-

cieties where highly palatable and energy-dense foods are freely

available, and in the absence of threat, what role can such cir-

cuits fulfill? One possibility is that maladaptive signaling within

the NAcSh-to-LH pathway could contribute to feeding disorders

by, for example, forcing the premature cessation of food intake in

anorexia (Sunday and Halmi, 1996), or by favoring repeated and

prolonged feeding bouts of palatable foods eventually causing

obesity (Spiegel, 2000). More research will be necessary, but

experimental evidence, taken in light of our current findings,

suggests this is probable. For example, chronic restraint stress

inmice that induced anorexia leading toweight loss and reduced

sucrose preference was linked to altered excitatory transmission

selectively onto accumbal D1R-MSNs (Lim et al., 2012).

Conversely, downregulation of D1R mRNA was seen in the

NAcSh of obesity-prone rats after exposure to a high-fat and

high-sugar diet (Alsiö et al., 2010). How thesemolecular and syn-

aptic alterations result in a functional change in the integration

and firing properties of accumbal neurons that project to the

LH requires further study to understand and ultimately explore

rational treatment options for feeding disorders.
EXPERIMENTAL PROCEDURES

Animals

All experiments were reviewed by the institutional ethics committee and

approved by the relevant authorities of the Canton of Geneva. Experiments
were carried out in wild-type C57BL/6J mice (bred in house or obtained

from Janvier Labs) or genetically modified lines as detailed in Table S1.

Surgery

Mice received stereotaxic injections of opsins and neural tracers and were

implanted with fiber optics as described previously (Brown et al., 2012) and

detailed further in the Supplemental Experimental Procedures.

Neuronal Tracing

For CTB tracing, mice were injected with 100–200 nl CTB-488, CTB-555, or

CTB-647 (AF-CTB, all from Life Technologies) unilaterally into the LH (ante-

rior-posterior [AP] –1.2, medial-lateral [ML] +1.2, dorsal-ventral [DV] –4.75),

following surgical procedures detailed in the Supplemental Experimental Pro-

cedures. For rabies tracing, mice received stereotaxic injection of 250–400 nl

AAV5-Flex-TVA-mCherry mixed with AAV8-Flex-RG unilaterally into the LH,

followed by 1 ml SADDG-EFG(EnvA) into the LH 14 days later. Then, 11 days

after CTB injections and 7 days after rabies injections, brains were processed

for confocal imaging, as detailed in the Supplemental Experimental Proce-

dures. To aid visualization, images were adjusted for brightness and contrast

using Photoshop (Adobe), but alterations always were applied to the entire

image.

In Vitro Electrophysiology

Acute coronal 200- to 250-mm brain slices containing NAcSh or LH were pre-

pared in cooled artificial cerebrospinal fluid (ACSF) containing the following (in

mM): NaCl 119, KCl 2.5, MgCl 1.3, CaCl2 2.5, Na2HPO4 1.0, NaHCO3 26.2, and

glucose 11, bubbled with 95%O2 and 5%CO2. In older mice, slices were pre-

pared in ACSF as above with the addition of the following (in mM): kynurenic

acid 3, NaHCO3, sucrose 225, glucose 1.25, and MgCl2 4.9. Slices were

kept at 34�C for 30 min before being transferred to the recording chamber

superfused with 2.5 ml/min ACSF. Whole-cell patch-clamp recordings were

made in NAc or LH neurons, while photocurrents were evoked by light flashes

delivered from a microscope-mounted blue or orange LED (Thorlabs) through

the objective, or by a blue or orange laser light directed onto the slice. The

holding potentials were�70mV for NAcShMSNs and�60mV for LH neurons,

and input resistances were measured using a hyperpolarizing step of �4 mV

every 10 s. Traces were amplified, filtered at 5 kHz, and digitized at 10 kHz.

The liquid junction potential was small and so traces were not corrected.

For validation of optogenetic effectors, the internal solution contained the

following (in mM): potassium gluconate 130, MgCl2 4, Na2 ATP 3.4, Na3 GTP

0.1, creatine phosphate 10, HEPES 5, and EGTA 1.1. For recording light-

evoked inhibitory synaptic currents in voltage-clamp mode, a high-chloride

solution was used, as before but with the following (in mM): potassium gluco-

nate 30 and KCL 100. In some experiments, GABA currents were blocked by

wash in of picrotoxin (100 mM, Tocris) and excitation was blocked by the addi-

tion of kynurenic acid (2 mM, Sigma-Aldrich). Further details on circuit map-

ping and biocytin labeling are provided in the Supplemental Experimental

Procedures.

Feeding Studies

All mice were first trained to consume liquid fat or sucrose over five, once daily,

1-hr sessions. Food and water were freely available in the home cage, unless

otherwise stated. Food training and testing took place in four mouse operant

chambers (15.93 143 12.7 cm;Med-Associates). Each chamber was housed

in an isolated cubicle and was equipped with a contact lickometer (ENV-250,

Med-Associates) that allowed for the counting of licks at a sipper tube held in

one wall of the chamber. The sipper tube provided access to either sucrose

(10% w/v in water) or fat (5% v/v in water of Lipofundin; from 20% Lipfundin

MCT/LCT, Braun Medical). Lipofundin is a fat emulsion containing both me-

dium and long-chain triglycerides, with an energy content of 7,990 (1,908) kJ

(kcal)/l. Liquid fat was chosen for the majority of our studies, since it was

consumed readily in mice without the need for food restriction and permits

comparison with an extensive body of literature that has examined NAcSh

and LH circuitry using either solid or liquid fat in rodents (Katsuura et al.,

2011; Zhang et al., 1998; Zheng et al., 2007). Licking activity was recorded

with a PC running Med-PC IV (Med-Associates) and custom code written in

MEDState Notation. An individual feeding burst was defined as three or
Neuron 88, 1–12, November 4, 2015 ª2015 Elsevier Inc. 9
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more consecutive licks with a maximum ILI of % 1 s. Full details of the appa-

ratus used, including those for optogenetic manipulations, are provided in the

Supplemental Experimental Procedures.

In Vivo Unit Recordings

D1RCre and D2RCre mice were injected with DIO-ChR2(H134R) in the NAcSh

and implanted with a fixed-position recording electrode coupled to an optic fi-

ber. Mice were trained to consume liquid fat and neural activity was recorded

using an Omniplex system (Plexon). Signals were high-pass filtered (>150 Hz).

Spike sorting was performed in Offline Sorter (Plexon) with custom routines

written in MATLAB used for subsequent analyses. Further details are provided

in the Supplemental Experimental Procedures.

To optogenetically identify D1R or D2R NAcSh neurons, 1 s of continuous

blue light (0.5–2 mW at the tip of the patch cable) was delivered to the im-

planted fiber, as described by others (Jin et al., 2014; Kravitz et al., 2013).

Cross-correlations between the average of all light-evoked and the average

of all spontaneous action potential waveforms were computed. Only cells ex-

hibiting significant light-evoked responses (Wilcoxon rank-sum text; 1 s pre

versus 1 s during light), with short latencies (within 10–20 ms), and with

cross-correlation values >0.98 were further considered for analysis as D1R-

or D2R-expressing neurons (Cohen et al., 2012).

Statistics

Lick counts in the 1-hr daily access sessions were binned in 10-min blocks and

subject to analysis bymixed-factor ANOVA, with definition of between-subject

(e.g., condition, Cre+ or Cre�) and/or within-subject factors (e.g., 10-min

block, 0–6; light period, on or off). Comparison of total licks was made by

paired or non-paired, two-tailed Student’s t test. For analysis of the frequency

distribution of burst size during light-on and -off periods, data were first subject

to amixed-factor ANOVA analysis, with condition (e.g., Cre+ or Cre�) and light

period (off or on) defined as between- and within-subject factors, respectively.

Where a significant interaction between condition and light period was found

(p % 0.05), further between-subject comparisons were performed using a

non-paired, two-tailed t test with Bonferonni corrections applied. Some exper-

iments in VGaTCre and D2RCre mice were performed using a within-subject

design and, as such, statistical tests were adjusted for a paired design.

To assess statistical significance of in vivo unit-recording data and to permit

direct comparisonwith similar studies (Krause et al., 2010; Tellez et al., 2012), a

Wilcoxon rank-sum test was used to compare unit activity changes during

consumption onset and offset (significance level %0.05 and <0.1 considered

as a trend). Specifically, for lick onset we compared mean firing rates from

the 3-s period prior to the first lick of a bout, with mean firing rates from the first

1-s period of the bout. Similarly, for lick offset we compared mean firing rates

during the last 1-s period of the bout, with mean firing rates in the 3-s period

following bout termination.
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