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Neural bases for addictive properties of
benzodiazepines
Kelly R. Tan1, Matthew Brown1*, Gwenaël Labouèbe1*, Cédric Yvon1*, Cyril Creton1, Jean-Marc Fritschy2,
Uwe Rudolph3 & Christian Lüscher1,4,5

Benzodiazepines are widely used in clinics and for recreational purposes, but will lead to addiction in vulnerable individuals.
Addictive drugs increase the levels of dopamine and also trigger long-lasting synaptic adaptations in the mesolimbic reward
system that ultimately may induce the pathological behaviour. The neural basis for the addictive nature of benzodiazepines,
however, remains elusive. Here we show that benzodiazepines increase firing of dopamine neurons of the ventral tegmental
area through the positive modulation of GABAA (c-aminobutyric acid type A) receptors in nearby interneurons. Such
disinhibition, which relies on a1-containing GABAA receptors expressed in these cells, triggers drug-evoked synaptic
plasticity in excitatory afferents onto dopamine neurons and underlies drug reinforcement. Taken together, our data provide
evidence that benzodiazepines share defining pharmacological features of addictive drugs through cell-type-specific
expression of a1-containing GABAA receptors in the ventral tegmental area. The data also indicate that subunit-selective
benzodiazepines sparing a1 may be devoid of addiction liability.

Addictive drugs can be classified into three groups, according to the
cellular mechanism through which they increase mesolimbic dopamine
(DA)1. Opioids, cannabinoids and the club drug c-hydroxybutyrate
reduce release from inhibitory afferents onto DA neurons, through their
respective G-protein-coupled receptors on GABA neurons. These sub-
stances activate pre- and postsynaptic receptors, indirectly increasing
the firing rate of DA neurons, a mechanism defined as disinhibition.
Nicotine, as a member of the second group, directly depolarizes DA
neurons by activating a4b2-containing acetylcholine receptors, whereas
the third group targets DA transporters (for example, cocaine and
amphetamines). It remains unclear whether these mechanisms can
account for the addiction liability of benzodiazepines (BDZs)2, which
are positive modulators of GABAA receptor (GABAAR) function.

As well as increasing mesolimbic DA, another common feature of all
addictive drugs studied so far is that they trigger adaptive synaptic
plasticity in the ventral tregmental area (VTA)3. Hours after the initial
exposure, excitatory afferents onto DA neurons of the VTA are
strengthened, in part by the insertion of GluR2-lacking AMPARs (a-
amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors)4–6.
To test whether a similar mechanism is elicited by BDZs, we examined
whether a single injection of BDZ would, as well as causing an increase
in the AMPA/NMDA ratio7, also induce a change in the slope of the
current–voltage (I–V)-curve of evoked excitatory postsynaptic currents
(EPSCs). Such rectification reflects the presence of GluR2-lacking
AMPARs, which are calcium permeable and blocked by polyamines
at positive potentials.

BDZ-evoked plasticity in dopamine neurons

In slices obtained 24 h after the intraperitoneal (i.p.) injection of
midazolam (MDZ), diazepam or flunitrazepam, the rectification index
(RI 5 EPSC265 mV/EPSC135 mV) was significantly higher than in slices
from saline-injected controls (Fig. 1a and Supplementary Fig. 2). Similar
rectification was measured after an injection of morphine, a member of

the class of drugs that cause disinhibition of DA neurons8. The BDZ
antagonist flumazenil blocked rectification when co-injected with
MDZ, but was without effect when co-injected with a control saline
solution (Fig. 2 and Supplementary Fig. 2). The adaptive plasticity
induced by systemic BDZs was also observed 24 h after local application
of MDZ into the VTA by stereotactic injection (0.5ml of an 8 mg ml21

solution over 10 min; Fig. 1b). Thus, BDZ-dependent effects on VTA
circuitry are sufficient to induce this cellular hallmark of addictive drugs.

BDZs bind to GABAARs at the interface between a and c subunits9

in a subunit-dependent manner. GABA neurons in many parts of the
brain express thea1 subunit isoform10, whereas midbrain DA neurons
lack a1 but express a2, a3 and a4 subunit isoforms11. Thus, the addic-
tive potential of BDZs might rely on the potentiation ofa1-containing
GABAARs, which would selectively inhibit GABA neurons and lead
to disinhibition of DA neurons. To test this idea, we examined
whether MDZ (that is, a rapidly acting, non-selective BDZ with a very
strong brain uptake12) has an effect in mice with a point mutation
(H101R) in thea1 subunit that disrupts the site where BDZs normally
bind13. In a1(H101R) mice, an i.p. MDZ injection no longer had an
effect on the rectification index of AMPAR EPSCs in DA neurons
(Fig. 1c). This was not due to a general loss of adaptive plasticity, as
morphine still caused a strong rectification. Moreover, stereotactic
injections of MDZ into the VTA also failed to elicit rectifying
AMPAR-mediated EPSCs in a1(H101R) mice, whereas control injec-
tions of artificial cerebrospinal fluid (ACSF) were without effect in
either genotype (Fig. 1d). Furthermore, i.p. injection of MDZ
increased the AMPA/NMDA ratio in wild-type but not in
a1(H101R) mice (Supplementary Fig. 3).

We next used pharmacological tools to confirm the involvement of
a1. Zolpidem (ZOL) is a non-classical BDZ selective for a1-containing
GABAARs14, whereas the experimental compound L-838 417 does not
modulate receptors that contain a1 (ref. 15). We therefore tested
whether ZOL and L-838 417 could evoke synaptic plasticity in DA
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neurons. We found that a single injection of ZOL led to rectifying
AMPAR-mediated EPSCs, whereas L-838 417 did not affect the I–V
curve (Fig. 2). Taken together with the results in a1(H101R) mice
described earlier, we conclude that BDZ-evoked synaptic plasticity
depends on a1-containing GABAARs within the VTA.

Cell type-specific expression of a1

To identify a1-expressing cells in the VTA, we next carried out
immunohistochemical staining for tyrosine hydroxylase and the a1
subunit isoform in GAD67 green fluorescent protein (GFP) mice
(Fig. 3a). These experiments confirmed that a1 was expressed mainly
in GFP-positive neurons, but not in tyrosine-hydroxylase-positive
DA neurons. Quantification showed that 81% of the GABA neurons
contained the a1 subunit isoform, although this was only the case in
7% of the DA neurons (Fig. 3a, inset). We also observed a1-staining
that could neither be associated to tyrosine-hydroxylase-positive nor
GAD67–GFP-expressing cells. This may reflect the pool of the so-
called tertiary cells that are neither DA- nor GABA-neurons16,17, or
could be due to detectability limits in fine processes.

To assess the functional consequences of this cell-type-specific
isoform expression for inhibitory transmission, we characterized
miniature inhibitory postsynaptic currents (mIPSCs) in the presence
of the glutamate receptor blocker kynurenic acid to isolate GABAAR-
mediated currents (Fig. 3b, c). On average, mIPSCs in GABA neurons
were slower and bigger than those in DA neurons, leading to a sig-
nificantly larger charge transfer in the former (Fig. 3d). This differ-
ence was of similar magnitude in wild-type and a1(H101R) mice
(Supplementary Fig. 4), in line with previous reports13 that baseline
transmission in mutant mice is normal. Moreover, the frequency of
mIPSCs, as well as the multiplicity factor (Supplementary Fig. 4c and
see Methods for detailed description), were similar in GABA and DA
neurons in both genotypes. Although this approach has its limita-
tions18, it suggests that the number of inhibitory synapses is in the
same range in the two cell types. To confirm further that synapses on
GABA neurons express a1-containing GABAARs, we tested for effects
of MDZ on charge transfer and frequency of mIPSCs in wild-type and
a1(H101R) mice. In DA neurons, MDZ significantly increased the
charge transfer and decreased the mIPSC frequency in both
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Figure 1 | BDZ-evoked synaptic
plasticity is abolished in a1(H101R)
mutant mice. a, Top, normalized
AMPAR-EPSCs obtained at 265, 0
and 135 mV in slices from wild-
type (WT) mice after i.p. injection
with saline, MDZ (0.5 mg kg21) or
morphine (MOR; 15 mg kg21), 24 h
before being euthanized. Middle,
corresponding I–V curves. Bottom,
bar graphs represent group data for
the rectification index (RI).
F(2;21) 5 9.08. b, AMPAR-EPSCs,
I–V curves and rectification index
(top, middle and bottom panels,
respectively) observed when ACSF
or MDZ was injected into the VTA
in wild-type mice. t(11) 5 5.43.
c, Similar experiments performed
with a1(H101R) mice. Note that
morphine induces a rectification
that is similar in wild-type and
mutant mice. F(2;16) 5 17.88.
d, Similar experiments performed
with a1(H101R) mice when MDZ
was injected intra-VTA. n 5 6–10.
Data are mean 6 s.e.m.; **P , 0.01,
***P , 0.001.
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genotypes. In GABA neurons, MDZ increased the charge transfer and
decreased mIPSC frequency in slices from wild-type mice, but was
without effect on mIPSCs recorded in slices from a1(H101R) mice
(Fig. 3e, f and Supplementary Fig. 5a). As expected, MDZ had no
effect on mIPSC amplitude in either cell type or genotype19

(Supplementary Fig. 5b). The observation that the mIPSC frequency
is reduced by BDZs except in GABA neurons of a1(H101R) mice is
surprising at first, but could reflect presynaptic GABAARs. In fact,
such receptors have been described in the VTA, which after activation
reduce the release probability20.

Because DA neurons express a set of many subunit isoforms11, the
identification of the molecular composition of the GABAARs is dif-
ficult. Most DA neurons actually express the a3 subunit isoform
(96%, Supplementary Fig. 6). Notably, most GABA neurons do not
express the a3 subunit isoform (70%) even though significant hetero-
geneity was observed. In heterologous expressed systems, currents of
a1-containing receptors are smaller than those of a3-containing
receptors21. This, however, does not apply to DA neurons in the
VTA, because in a3 knockout mice currents are reduced by only
50%22. Our results establish that in a1(H101R) mice, endogenous
GABAA-mediated synaptic transmission is normal, whereas the

positive modulation of MDZ is abolished in GABA neurons, because
the a1 subunit isoform is selectively expressed in these cells.

Cellular determinants of disinhibition

In wild-type mice, mIPSCs in both GABA and DA neurons were
enhanced by BDZs. However, when BDZs are administered while trans-
mission is intact, the extent of current amplification in DA neurons
depends on the frequency of synaptic events, which originate in the
interneurons upstream. We therefore monitored the effect of MDZ on
spike-driven, spontaneous IPSCs (sIPSCs) in DA neurons (Fig. 4).
Although, the charge transfer of sIPSCs on average increased after
MDZ (in line with the mIPSC data), there was a strong reduction of
the frequency of spike-driven events in DA neurons (Supplementary
Fig. 7). As a result, when we integrated the charge transfer of sIPSCs over
time before and after the application of MDZ (relative total current), we
found a significant decrease (Fig. 4b). Because interneurons are effi-
ciently inhibited by MDZ, fewer spikes are generated, strongly decreas-
ing the number of sIPSCs, an effect that predominates over the MDZ
amplification of the individual event. In a1(H101R) mice, in contrast,
we observed an increased total current in DA neurons because the
GABA neurons were insensitive to MDZ. In summary, in wild-type
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Figure 3 | a1 is selectively
expressed in GABA neurons of the
VTA. a, Immunohistochemical
staining for tyrosine hydroxylase
(TH, red) and a1 (blue) in VTA
slices of GAD67–GFP (green)
knock-in mice. Concentric pie
charts represent the fraction of a1-
positive cells (inner segment), and
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b, Example trace of mIPSC
recordings in GABA and DA
neurons obtained in slices from
wild-type mice. c, Representative
averaged mIPSC trace from a GABA
and a DA neuron. The overlay
shows the difference in kinetics
when the two currents are
normalized to the average mIPSC
peak amplitude. d, Box plots
represent group data for charge
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mice. The box represents the
median and interquartile range, the
top and bottom vertical bars denote
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t(75) 5 7.55 and t(75) 5 3.16,
respectively; n 5 25–48.
e, Representative average traces of
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(dotted line) application of MDZ
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and a1(H101R) mice.
f, Corresponding box-plots
representing group data for relative
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***P , 0.001.
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mice, MDZ led to a net decrease of the total inhibitory current in DA
neurons, which could be sufficient to cause their disinhibition (see
Supplementary Fig. 1 for schematics).

We therefore tested the effect of MDZ on the firing rate of DA
neurons in the VTA by performing extracellular single-unit record-
ings in vivo. When the drug was injected into the tail vein of wild-type
mice, we recorded a significant increase in the firing rate that was
reversed by flumazenil (Fig. 5a, e, g). In stark contrast, no such dis-
inhibition could be observed in a1(H101R) mice (Fig. 5b, e, g). In line
with a disinhibition model, the data in the DA neurons were mirrored
by the observations in GABA neurons. MDZ caused an inhibition of
the spontaneous firing rates, at times leading to complete spike sup-
pression (Fig. 5c, f, g). In a1(H101R) mice, MDZ did not significantly
affect firing in GABA neurons (Fig. 5d, f, g). The specificity of these
findings are further demonstrated by the observation that in mice in
which a different a subunit isoform had been mutated (a3(H126R)
mice)23, MDZ caused an increase in the firing rate of DA neurons
comparable to wild-type mice (Supplementary Fig. 8). The magnitude
of this increase was inversely related to the basal firing rate, which
further indicates a disinhibition model (Fig. 5e). Moreover, in
a1(H101R) mice, disinhibition of DA neurons was observed with
morphine, an effect that was also inversely correlated to the basal firing
rate (Fig. 5h). Although anaesthesia may modify the overall distri-
bution of firing rates and therefore the magnitude of the disinhibition,
the mean basal firing rates observed here were comparable to values
recorded in freely moving animals24,25.

Self-administration of midazolam

The results demonstrate that a1-containing GABAARs mediate the
increase of mesolimbic DA in response to BDZs. Furthermore, DA
antagonists can reduce self-administration of and preference to these
drugs26,27. We therefore tested the effect of the a1 subunit isoform on
oral self-administration of MDZ, by offering the mice a free choice of
two drinking solutions (Fig. 6a). During the first 3 days the two bottles
contained water. Sucrose was then added to both bottles to mask any
bitter tastes. This led to an increase in the overall consumption, but no
particular preference. Finally, MDZ was added to one of the two
bottles. During the test period with MDZ, the total consumption
did not change in either genotype (Fig. 6b). A preference for the
MDZ solution developed rapidly in wild-type mice, but not in
a1(H101R) mice (Fig. 6c, d). Wild-type mice drank between 0.8
and 1.1 mg kg21 per 24 h of MDZ, which corresponds to a pharmaco-
logical dose. Two control experiments were carried out using a similar
protocol. First, we offered a1(H101R) mice a choice between water
and sucrose solution. Both wild-type and mutant mice developed a
strong preference for sucrose, indicating that a1(H101R) mice are not
generally deficient in reward reinforcement (Supplementary Fig. 9).
We also tested whether a3(H126R) mice, in which MDZ caused a
normal disinhibition of DA neurons (Supplementary Fig. 8), would

develop a preference for MDZ, which was indeed the case (Sup-
plementary Fig. 10). Although BDZs, particularly MDZ, may enhance
taste perception28, this is unlikely to influence the interpretation of
these data, as several studies have shown that BDZ-mediated taste
enhancement is independent of a1-containing GABAARs29,30.

Discussion

On the basis of our data, we propose that BDZs increase DA
levels through disinhibition, similar to opioids, cannabinoids and
c-hydroxybutyrate. This disinhibition is dependent on the BDZ-
binding site on a1-containing GABAARs in the VTA. The net effect
of BDZs on the VTA circuit is dominated by the role of a1-containing
GABAARs, which is supported by the following three observations.
First, GABAAR-mediated quantal transmission is stronger in GABA
neurons than in DA neurons, as evidenced by the larger charge transfer
of mIPSCs (Fig. 3d). Second, GABA neurons have a higher input resi-
stance than DA neurons17, allowing the same charge transfer to more
effectively change the membrane potential of GABA neurons than DA
neurons. Third, the BDZ-dependent enhancement of each IPSC on
DA neurons causes little inhibition of DA neuron activity because
GABA neurons fall silent and no longer generate those IPSCs. Our
model could also apply to earlier work probing the effect of the
GABAAR-agonist muscimol31. When administered directly into the
VTA, muscimol causes an increase of DA levels in the nucleus accum-
bens32. This effect only occurs at low doses, which led to the conclusion
that the effect is mediated indirectly on non-DA neurons33,34. This
inverse dose-dependence may be due to the fact that muscimol, unlike
BDZs, is not a positive modulator but an agonist. In line with this
interpretation, muscimol at high concentrations in fact inhibits DA
neurons35.

The implication of a1 in the addictive effect of BDZs is surprising
because the clinically available compound ZOL is selective for this sub-
unit and has been claimed to carry a low risk for addiction36. However,
this optimistic view contrasts with the observation that ZOL is readily
self-administered37 and the clinical reality. Our data with the subunit
isoform-selective compounds also show that ZOL triggers drug-evoked
plasticity, and indicate that a1-sparing compounds may be promising
candidates in the search for BDZs devoid of addiction liability. Because
a1-containing GABAARs outside the VTA mediate other effects such as
seizure control, sedation and anterograde amnesia38, a1-sparing com-
pounds will certainly not be suitable for all indications. The dissociation
between anxiolysis, mainly a2-mediated23, and addiction, however,
seems possible in principle. This is particularly appealing as high anxiety
levels suggest increased vulnerability for addiction39.

Our work unravels the molecular basis of the defining pharmaco-
logical features that BDZs share with addictive drugs, which we
believe will be key for designing new BDZs with lower addiction
liability. However, we note that increased levels of mesolimbic
dopamine are necessary for addiction, but not sufficient on their
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own. Recent studies suggest that early drug-evoked plasticity in the
VTA may facilitate addiction by gating more enduring forms of
adaptations in target regions of the mesolimbic system, which would
represent the eventual locus underlying long-term addictive beha-
viours40,41. Coinciding factors of vulnerability, either in the initial

events in the VTA or in subsequent events in mesolimbic targets, may
ultimately explain individual variations in susceptibility to addiction,
both for BDZs and for other drugs42.

METHODS SUMMARY

Horizontal slices of the midbrain (250mm) were prepared as previously described43

from C57BL/6 mice, Pitx3–GFP knock-in mice44, GAD67–GFP Dneo mice45 and

a1(H101R) knock-in mice13, 24 h after i.p. or intra-VTA (mediolateral (ML): 60.8,

anteroposterior (AP): 22.4, dorsoventral (DV): 24.4 mm from bregma) injections

of different BDZs. AMPAR-mediated EPSCs were recorded in the presence of

D(2)-2-amino-5-phosphonovaleric acid (AP5) and picrotoxin. mIPSCs were

recorded in the presence of kynurenic acid (2 mM) and tetrodotoxin (500 nM).

In vivo extracellular single-unit recordings of DA neurons in the VTA (ML: 21.2,

AP: 23.2, DV: 24 to 4.5 mm from the bregma) were carried out in wild-type,

a1(H101R) anda3(H126R)23 knock-in mice. Drugs were delivered through the tail

vein. Immunofluorescence with a guinea-pig antibody against thea1 ora3 subunit,

a mouse antibody against tyrosine hydroxylase, and a rabbit antibody against

enhanced GFP (eGFP) was performed as previously described10 in GAD67–GFP

Dneo mice. For the oral self-administration of MDZ, mice were housed with free

access to two bottles containing either MDZ in sucrose or sucrose alone. Grouped

data are expressed as means 6 s.e.m. For statistical comparisons the one-way ana-

lysis of variance (ANOVA), Bonferroni matched, or the paired Student’s t-tests

were used. The levels of significance are indicated as follows: *P , 0.05, **P , 0.01

and ***P , 0.001.
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M. Frerking, M. Serafin and H. Möhler for critical reading of the manuscript.
Y. Yanagawa provided the GAD67–GFP Dneo mouse line, and we thank
K. A. Miczek and H. U. Zeilhofer for help with the GABAA mutant mouse lines. This
work is supported by the National Institute on Drug Abuse (NIDA; DA019022; C.L.,
P. Slesinger), the Swiss National Science Foundation, the Swiss Initiative in Systems
Biology (Neurochoice) and the European Commission Coordination Action
ENINET (LSHM-CT-2005-19063). The content is solely the responsibility of the
authors and does not necessarily represent the official views of the NIDA or the
National Institutes of Health.

Author Contributions K.R.T. carried out all in vitro electrophysiology experiments.
M.B., G.L. and C.Y. contributed equally to the in vivo recordings. K.R.T. and C.C.
performed the behavioural experiments. J.-M.F. carried out the
immunohistochemistry. U.R. generated the mutant mice. C.L. designed the study
and wrote the manuscript with the help of all authors.

Author Information Reprints and permissions information is available at
www.nature.com/reprints. The authors declare no competing financial interests.
Correspondence and requests for materials should be addressed to C.L.
(christian.luscher@unige.ch).

ARTICLES NATURE | Vol 463 | 11 February 2010

774
Macmillan Publishers Limited. All rights reserved©2010

www.nature.com/nature
www.nature.com/nature
www.nature.com/reprints
mailto:christian.luscher@unige.ch


METHODS
Animals. Animals used were 2–3-week-old (in vitro electrophysiology) and

20–32-week-old (in vivo electrophysiology/behaviour) wild-type C57BL/6 mice,

Pitx3–GFP knock-in mice44, GAD67–GFP Dneo mice45, a1(H101R) knock-in

mice13 and a3(H126R) knock-in mice23. All procedures were approved by the

local ethics committee as well as the cantonal authorities of Geneva.

In vitro electrophysiology. Horizontal slices (250-mm thick) of the midbrain

were prepared as described previously43. Slices were kept in ACSF containing (in

mM) 119 NaCl, 2.5 KCl, 1.3 MgCl2, 2.5 CaCl2, 1.0 NaH2PO4, 26.2 NaHCO3 and

11 glucose, and bubbled with 95% O2 and 5% CO2. The whole-cell voltage-
clamp recording technique was used (31–33 uC, 2 ml min21, submerged slices)

to measure synaptic responses of DA neurons, mIPSCs and holding currents of

DA or GABA neurons of the VTA. The holding potential was 260 mV and the

access resistance was monitored by a hyperpolarizing step to 290 mV with each

sweep every 10 s. Experiments were terminated if the access resistance varied

more than 20%. Synaptic currents were evoked by stimuli (0.1 ms) at 0.05 Hz

through bipolar stainless steel electrodes positioned rostral to the VTA. When

EPSCs were recorded, the internal solution was composed of (in mM) 130 CsCl,

4 NaCl, 2 MgCl2, 1.1 EGTA, 5 HEPES, 2 Na2ATP, 5 Na2-creatine-phosphate,

0.6 Na3GTP and 0.1 spermine, whereas for mIPSCs the internal solution used

contained 30 potassium-gluconate, 100 KCl, 4 MgCl2, 1.1 EGTA, 5 HEPES,

3.4 Na2ATP, 10 creatine-phosphate and 0.1 Na3GTP. Currents were amplified

(Multiclamp 700A, Molecular Devices), filtered at 1 kHz and digitized at 5 kHz

(National Instruments Board PCI-MIO-16E4, Igor, WaveMetrics). As the liquid

junction potential was 23 mV, traces were not corrected. Recordings of EPSCs

were carried out in the presence of picrotoxin (100mM) and AP5 (50mM). The

rectification index was calculated by dividing the amplitude of the AMPAR-

EPSCs measured at 265 mV by the amplitude at 135 mV. sIPSCs were recorded
with continuous bath-application of kynuric acid (2 mM), and tetrodotoxin

(500 nM) was added to measure mIPSCs. When sIPSCs were recorded (Fig. 4),

the bath-applied ACSF contained a Ca21/Mg21 ratio of 3–6. The goal was to

increase the number of interneuronal spikes while interfering with the

GABAergic output per spike as little as possible. The multiplicity factor was

calculated following the protocol described previously18. At the end of each

experiment, picrotoxin (100mM) was bath-applied to verify that the recorded

current was mediated by GABAARs.

In vivo electrophysiology. Mice were initially anaesthetized with 4% chloral

hydrate (480 mg kg21, i.p.), and supplemented each hour with a lower dose

(120 mg kg21 i.p.) to maintain optimal anaesthesia throughout the experiment.

Animals were positioned in a stereotaxic frame (MyNeurolab) and body tem-

perature was maintained at 36–37 uC using a feedback-controlled heating pad

(Harvard Apparatus). An incision was made in the midline to expose the skull. A

burr hole was unilaterally drilled above the VTA (AP: 23.0 to 3.4, ML: 21.1 to

1.4, DV: 24 to 4.5 mm from the bregma)46, and the dura was carefully retracted.

Electrodes were broken back to give a final tip diameter of 1–2 mm and filled with

2% Chicago Sky Blue dye in 0.5 M sodium-acetate. All electrodes had impedance
of 15–25 MV. They were angled by 10u from the vertical, slowly lowered through

the burr hole with a micro drive (Luigs Neumann) and positioned in the VTA.

All electrode descents within a single animal were a minimum of 100mm apart. A

reference electrode was placed in the subcutaneous tissue. Electrical signals were

AC-coupled, amplified (Neurodata), and monitored in real time using an audio-

monitor (homemade). Signals were filtered on-line (Humbug, Quest scientific)

and digitized at 20 kHz (for waveform analysis) or 5 kHz (Igor, WaveMetrics). The

bandpass filter was set between 0.3 and 5 kHz. Extracellular identification of VTA

neurons was on the basis of their location as well as on their established electro-

physiological properties (DA neurons: biphasic action potential of more than

1.1 ms duration, firing frequency of 0.5–7 Hz and spike height accommodation

during bursts)47,48. In addition, we discriminated between the two populations

using an aversive electrical footshock and response to morphine. The drugs were

injected through the tail vein using a cannula. After completion of recordings,

Chicago Sky Blue dye was deposited by iontophoresis (215mA, 15 min) to mark

the position of the final recording site. At the end of the experiment, the brain was

kept at 220 uC in a solution of methyl butane. Fifty-micrometre thick coronal

sections were cut on a cryostat, stained with luxol fast blue/cresyl violet and the

recording site was verified by light microscopy.

Stereotaxic injection. Wild-type and a1(H101R) mice were anaesthetized with

ketamine (100 mg kg21) and xylazine (10 mg kg21). The animal was then placed

in a stereotaxic frame (MyNeurolab). The VTA coordinates were ML: 60.8, AP:

22.4, DV: 24.4 mm from bregma, and verified with ink injections. Five micro-

litres of an 8 mg ml21 MDZ solution or 5 ml ACSF were injected bilaterally over

10 min. The animal was sutured and recovered for 24 h until in vitro recordings

were made.

Immunohistochemistry. GAD67–GFP Dneo mice were anaesthetized with

nembutal (50 mg kg21) and perfused transcardially with 4% paraformaldehyde

in phosphate buffer. The brain was extracted and post-fixed for 3 h, cryoprotected

in 30% sucrose in PBS, frozen, and cut at 40mm with a sliding microtome. Triple

immunofluorescence with guinea-pig antibody against the a1 or a3 subunit, a

mouse antibody against tyrosine hydroxylase, and a rabbit antibody against eGFP

was performed as previously described10 in perfusion-fixed transverse sections

from the brain of GAD67–GFP Dneo mice. Images were taken with a laser scan-

ning confocal microscope using a 320 (numerical aperture (NA) 0.8) or a 363

(NA 1.4) objective, using sequential acquisition of separate channels to avoid

cross-talk. The fraction of neurons single- and double-labelled for these markers

was assessed pair-wise (for example, a1/TH or a3/GAD67–GFP) in four equally

spaced sections through the VTA per mouse (n 5 4) and expressed as a percentage

of the total number of cells counted.

Oral self-administration. Mice were habituated to handling for 1 week and

housed with free access to two 450-ml plastic bottles in their home cage. Two

days before the test, 4% sucrose was added to both bottles. During the test mice

had access to bottles containing either MDZ (0.005 mg ml21) in sucrose or

sucrose alone. For the sucrose preference experiment in a1(H101R) mice, sucrose

was compared against water. In cases where mice spontaneously preferred one

bottle to another during the pretest phase, MDZ was always added to the least-

preferred bottle during the test phase. To determine MDZ preference, the relative

consumption of MDZ solution to the control solution was calculated.

Drugs. MDZ, diazepam, flunitrazepam, flumazenil, ZOL and L-838 417 were

supplied by Tocris, and morphine-HCl by the pharmacy of the University

Hospital of Geneva. Drugs were dissolved in saline for i.p. and i.v. injections, in

ACSF for intra-VTA injections, and in dimethyl sulphoxide (DMSO) for bath-

applications. The final DMSO concentration was 0.1%.

Statistics. Grouped data are expressed as means 6 s.e.m. or box-plots (median,

interquartile, and 90th and 10th percentiles). For statistical comparisons the

one-way ANOVA, Bonferroni matched, or the paired Student’s t-tests were used.

The levels of significance are: *P , 0.05, **P , 0.01 and ** P , 0.001. The

Kolmogorov–Smirnov test was used to compare cumulative probability plots.
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