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Optogenetics has enabled the characterization of the neural

circuits involved in brain diseases, such as addiction,

depression or obsessive compulsive disorders. Recently, the

technique has also been used to propose blueprints for novel

treatments aiming at restoring circuit function through the

reversal of specific forms of synaptic plasticity. Since

optogenetic manipulations cannot be immediately translated to

human use, we argue that an intermediate strategy could

consist of emulating optogenetic protocols with deep brain

stimulation (DBS). This translational path to rational,

optogenetically inspired DBS protocols starts by refining

existing approaches and carries the hope to expand to novel

indications.
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Disorders caused by neuronal circuit
dysfunction
Diseases of the brain represent a tremendous personal

and financial burden to society [1]. Some conditions are

defined by the death of neurons such as stroke, Parkin-

son’s disease, or Alzheimers disease. In contrast, a large

number of disorders are characterized by dysfunction of

neuronal circuits: a functional ensemble of neurons con-

nected via synapses [2]. Neuronal circuit dysfunction is

characteristic of depression, obsessive-compulsive disor-

der, schizophrenia and addiction, for example. Since no

neurons are lost, no macroscopic structural alteration

occurs, which precludes the diagnosis with classical

imaging methods. Pre-clinical models are therefore
www.sciencedirect.com 
particularly useful because they allow invasive functional

investigation of the disease pathology with cellular reso-

lution. To this end, the advent of optogenetics has

allowed for the dissection of underlying neural circuits

and their alterations in mouse models of brain diseases.

Combining cell type-specific viral expression of the light-

sensitive effectors with stereotactic region targeting and

precise focus of optic fibers, optogenetic manipulations

allow for the control of defined neurons in vivo. In this

review, we focus on addiction as a case study in the

synaptic and circuit basis of disease and discuss how

optogenetic manipulations of neuronal circuitry can in-

spire novel treatments for this disorder.

The synapse as site of pathology in addiction
A leading hypothesis posits that addictive drugs hijack the

mesocortico-limbic dopamine (DA) system [3]. This

starts with a strong increase of extracellular DA levels,

an acute effect shared by all drugs tested to date [4,5].

This is followed by activation of intracellular pathways [6]

leading to a long lasting remodeling of synaptic transmis-

sion that outlasts the presence of the drug in the brain,

even in the case of a single exposure [7]. With repeated

drug consumption, drug-evoked synaptic plasticity can

persist for weeks and months. Even if consumption is

ceased, synaptic transmission remains altered and con-

tributes to craving and relapse, two defining symptoms of

addiction. We will briefly review some of the key features

of drug-evoked synaptic plasticity to develop the ratio-

nale for reversal strategies.

After a single exposure to an addictive drug, glutamater-

gic afferents from the laterodorsal tegmentum onto DA

neurons of the VTA that project to the NAc are strength-

ened for approximately seven days [8–10]. This potenti-

ation is expressed by the redistribution of both AMPA and

NMDA receptors. GluA2-containing AMPARs present in

naı̈ve animals are exchanged for GluA2-lacking AMPARs

[11], while NMDARs switch from a GluN1/GluN2A

heteromeric to a GluN1/GluN2B/GluN3A heterotrimeric

subunit composition [12]. Consequently, AMPARs can

flux calcium, whereas NMDAR are calcium impermeable

after drug exposure. Because of the inward rectification of

GluA2-lacking AMPARs, synaptic calcium influx is fa-

vored by hyperpolarization of the membrane, which is in

stark contrast to the situation before drug exposure,

where calcium enters the cell through NMDAR only if

they are depolarized. As a consequence, the rules for the
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induction of activity dependent plasticity at this synapse

are inverted; pairing glutamate release with postsynaptic

depolarization no longer elicits long-term potentiation

(LTP), which can be rescued if the postsynaptic neuron

is hyperpolarized instead [13].

All addictive drugs tested till date potentiate synaptic

transmission at excitatory afferents onto VTA DA neu-

rons, including nicotine, morphine, cocaine, ampheta-

mines, benzodiazepines and ethanol [9,14,15]. Even

strong, selective optogenetic stimulation of VTA DA

neurons evokes an identical plasticity [16], further dem-

onstrating that addictive drugs converge on the activation

of VTA DA neurons. The return to baseline transmission

following this potentiation relies on the activation of

metabotropic glutamate type 1 receptors (mGluR1),

which require strong excitatory inputs for activation,

owing to their perisynaptic location [11,17]. In the slice

preparation, this is best achieved with a short train of

action potentials (5–10 stimuli at 10–15 Hz). This depo-

tentiation is protein synthesis dependent, most probably

relying on local de novo synthesis of GluA2 subunits from

prefabricated mRNA, and their subsequent assembly into

functional AMPARs and exchange for GluA2-lacking

receptors [18].

While the molecular mechanisms underlying this early

form of drug-evoked synaptic plasticity are well estab-

lished, much less is known about the behavioral conse-

quences. Using positive allosteric modulators of mGluR1

it is possible to rapidly reverse drug-evoked synaptic

plasticity in the VTA [19]. However, reversing plasticity

in the VTA does not affect reinforcement, or early adap-

tive behaviors such as locomotor sensitization or condi-

tioned place preference [20]. Altered synaptic

transmission in the VTA may therefore represent a meta-

plasticity enabling changes in target region of the projec-

tion, which then would be more causally implicated in

drug-adaptive behaviors [21]. In line with this idea,

genetic ablation of GluN1 selectively in midbrain DA

neurons precludes cocaine-evoked plasticity not only in

the VTA, but also in the NAc [19]. The same study also

showed that rapid reversal of the cocaine-evoked plastic-

ity in the VTA prevents synaptic changes in the NAc even

after repeated injections.

VTA DA neurons target the NAc, which is composed of

medium sized spiny neurons (MSNs, 95% of all neurons),

which fall into two classes based on their expression of

either D1 or D2 dopamine receptor [22,23]. MSNs re-

ceive excitatory inputs from limbic and cortical areas that

form synapses onto the dendritic spines, which are also

targeted by ascending DA afferents. The characteristic

synaptic arrangement with glutamatergic synapses on the

head of the spine and DA terminals at the spine neck

underlines the modulatory role of DA onto glutamate

transmission [24]. At excitatory afferents onto D1-MSNs,
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drug-evoked synaptic potentiation is observed typically

after multiple exposures ([25] but in some cases one

injection is sufficient provided the withdrawal period is

long enough, [26]) and persists after weeks of withdrawal.

For example, in the case of 10 days of cocaine self-

administration followed by a month of withdrawal,

the ratio of the amplitude of AMPAR-EPSCs to

NMDAR-EPSCs is higher than in naı̈ve mice and the

current–voltage curve of the AMPAR-EPSC shows in-

ward rectification [27,28]. Interestingly, the two changes

are carried by specific inputs, increased AMPA/NMDA

ratio is a feature of afferents from the ventral hippocam-

pus, while rectification appears selectively at the medial

prefrontal cortex (mPFC) inputs [28]. At this mPFC

input, unsilencing of synapses containing only NMDARs

by insertion of GluA2-lacking AMPAR may contribute to

the increase in rectification [29,30].

Synaptic potentiation at accumbal synapses can be re-

versed using appropriate stimulation protocols, previously

established to induce long-term depression (LTD;

[31,32]). For example, stimulation frequencies between

10 and 15 Hz induces mGluR-LTD which, among other

effects removes GluA2-lacking AMPARs, while 1 Hz

stimulation can induce a form of LTD that is NMDA-

dependent [33]. For mGluR-LTD, it is crucial that these

protocols selectively activate glutamatergic inputs be-

cause D1Rs inhibit the signaling required for mGluR-

LTD [34,35].

Using pharmacological tools [36,27,37] and optogenetic

reversal protocols [26], cocaine-evoked synaptic plasticity

in the NAc has been implicated in drug-adaptive behav-

ior. Behavioral sensitization and cue-associated seeking

for example have been attributed to the mPFC input,

whereas strengthening of excitatory inputs from the ven-

tral subiculum of the hippocampus (vHipp) may mediate

the motivation for cocaine-seeking [26,28,38]. Plasticity

at the BLA to NAc input, on the other hand, correlates

with the increase of seeking over withdrawal time, a

phenomenon termed incubation of craving [29].

Drug-evoked plasticity also affects the output of the NAc,

specifically a population of D1R-MSNs neurons which

project preferentially onto the VTA GABA neurons [39].

Following cocaine exposure, these D1-MSNs express a

pre-synaptic form of synaptic potentiation, leading to the

disinhibition of VTA DA neurons, which may thus con-

tribute to their enhanced excitation. When this plasticity

is reversed, locomotor sensitization is abolished.

Optogenetic restoration of synaptic
transmission and circuit function
Beyond strengthening the links of causality between

drug-evoked synaptic plasticity and drug adaptive behav-

ior, reversing drug-evoked synaptic plasticity could also

have therapeutic potential. Would it be possible to
www.sciencedirect.com
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develop manipulations of synaptic function to permanent-

ly restore normal transmission and thus abolish addictive

behavior? Specific ‘circuit-breaking’ interventions are in-

herently difficult to achieve using classical small molecule

pharmacology. Since systemic administration affects the
Figure 1
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entire brain non-specifically, side effects are probable and

the therapeutic effect may be obscured. In pre-clinical

models, circuit-specific manipulations can be achieved

using optogenetics: by applying specific stimulation pro-

tocols in awake mice, synapses can be potentiated or
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depressed. Several groups have now provided proof of

principle that this approach can also be used to restore

normal transmission in situations of pathology. For exam-

ple, reversing potentiated auditory inputs to the lateral

amygdala with an in vivo LTD protocol reduced condi-

tioned fear responding in a model of post-traumatic stress

disorder [40]. Optogenetically driving cortico-striatal pro-

jections suppresses pathological grooming in a model of

obsessive compulsive disorder [41], whereas activation of

cortico-striatal projections at frequencies known to induce

an LTD cause pathological grooming in wild-type mice

[42]. In models of addiction, applying LTD protocols at

excitatory synapses in the nucleus accumbens reverses

cocaine-evoked potentiation of excitatory transmission

and addiction-related behavior, as discussed above

[26,28–30]. Applying LTD protocols at inputs from the

basolateral amygdala or ventral hippocampus reduced

responding for cocaine after withdrawal from self-admin-

istration (Figures 1 and 2).

Despite the powerful, specific control of neuronal circuits

that is possible with optogenetics, translation of this

therapy into humans is not possible, at least for the near

future [2]. The delivery and safety of viral effectors and

their stable expression over long periods of time has yet to

be realized, and light-delivery systems would have to be

optimized [43]. Moreover, the techniques commonly

used to achieve cell type specificity in rodents involve

the use of transgenic animals; achieving similar levels of

specificity in humans remains a significant challenge.

However, we may be able to capitalize on optogenetic

insight to inspire novel protocols for deep brain stimulation
Figure 2
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(DBS), to achieve a similar synaptic reversal in pathological

conditions.

Proof of principle: using DBS to restore circuit
dysfunction
DBS is the only FDA approved treatment that allows for

direct circuit modulation in humans. It involves surgically

implanting electrodes into specific nuclei in the brain, and

passing current continuously through these electrodes at

high frequencies. Originally used in cases of Parkinson’s

disease, the indications for DBS have expanded to in-

clude a variety of neurological and psychiatric disorders,

including depression, tremor and obsessive-compulsive

disorder [44].

The precise mechanisms of action of DBS remain elusive.

It is inherently non-specific, as electrical field stimulation

affects all cell types in a heterogenous nucleus, and may

also modulate activity of afferent and efferent projections

as well as fibers of passage [45,46]. Computational models

and evidence from in vivo recordings suggest that DBS

can have both excitatory and inhibitory effects on neuro-

nal activity, depending on stimulation geometry and

composition of the brain nucleus [47]. Despite these

limitations, it may be possible to design a novel DBS

protocol that would emulate optogenetic reversal strate-

gies. To propose such a novel protocol, one would need to

refine the technique to manipulate neural activity and

synaptic transmission at identified circuit nodes. This is

challenging because of the heterogeneity of neurons in

the brain and the fact that functional circuits are anatom-

ically intertwined. One possible approach may therefore
al Optogenetically
inspired DBS
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be to combine DBS with specific pharmacology to refine

its effects.

In the field of addiction, DBS has been used in a few

instances to reduce symptoms of craving in severely

treatment-refractive patients [48,49]. However, the

effects are variable and transient. While pre-clinical stud-

ies have implicated altered activity in areas projecting to

the NAc (such as the mPFC) in the effects of DBS [50],

the mechanisms underlying the therapeutic effects are

not well understood. In recent proof of principle study, a

novel DBS protocol was developed to reverse cocaine-

evoked plasticity in the NAc and consequently reduce

addiction-related behavior, through a defined mechanism

of action [51]. By building on insight from optogenetic

reversal strategies of cocaine-evoked plasticity in the NAc

(see above), a stimulation frequency of 12 Hz stimulation

for 10 min was used to induce a long-term depression

(LTD) of excitatory synapses in this structure. As with

optogenetics, this protocol aimed at inducing mGluR-

LTD. Stimulation alone had no effect on cocaine-evoked

plasticity or drug-adaptive behavior; however, it is also

known that signaling through dopamine D1 receptors can

oppose mGluR-evoked depression of excitatory synapses

[35,52]. We therefore hypothesized that non-specific

DBS stimulation may not only cause glutamate release

(to activate mGluRs), but could also release dopamine,

which would signal through D1 receptors on MSNs. DBS

may therefore activate two opposing signaling cascades.

In agreement with this hypothesis, electrical stimulation

in the presence of a D1-antagonist unmasked mGluR-

LTD. With this optogenetically inspired DBS protocol,

cocaine-evoked plasticity in the NAc was reversed and

cocaine-adaptive behavior abolished. Importantly, the

effects of this optogenetically inspired DBS protocol

persisted for several days, and the pharmacological adju-

vant is approved for multiple indications [53,54]. Such

proof-of-principle based on optogenetic manipulations

and circuit dissection can lead to novel blue prints for

DBS protocols applicable to human patients.

Conclusions and perspective
With a rational approach as described above, it may be

possible to propose novel DBS protocols by carefully

choosing the stimulation site and with a clear goal as to

which synaptic alterations need to be normalized. Poten-

tial indications include obsessive-compulsive disorder,

depression and, as discussed, addiction. There is no doubt

that DBS will evolve and will not only provide long-

lasting relief from symptoms of psychiatric disorders, but

will also provide insight into their underlying mecha-

nisms, which will facilitate the development and optimi-

zation of future circuit-based treatment strategies.
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Balland B, Dahan L, Luján R, Deisseroth K, Lüscher C: Drug-
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