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Epilepsy, Hyperalgesia, Impaired Memory,
and Loss of Pre- and Postsynaptic GABAB

Responses in Mice Lacking GABAB(1)

et al., 1993; Lüscher et al., 1997; Marshall et al., 1999).
On the basis of pharmacological differences, receptor
heterogeneity between pre- and postsynaptic, as well
as between auto- and heteroreceptors, on inhibitory and
excitatory terminals, respectively, has been claimed.
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(Bonanno and Raiteri, 1993; Mott and Lewis, 1994) whileWolfgang Froestl,1 Edgar Käslin,1 Reinhard Korn,1

others did not find any evidence for subtypes (Wald-Serge Bischoff,1 Klemens Kaupmann,1
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pression pattern of the two cloned subunits matchesUniversity of Geneva
the brain distribution of GABAB binding sites (BischoffCH-1211 Geneva 4
et al., 1999), and the heterodimeric GABAB(1,2) receptorSwitzerland
was shown to activate all well-characterized GABAB ef-
fector pathways in transfected cells (Marshall et al.,
1999). These findings, and the fact that cloning has failedSummary
to identify pharmacologically distinct receptor sub-
types, led to speculations that the cloned subunits mightGABAB (�-aminobutyric acid type B) receptors are im-
be responsible for most, possibly all, GABAB-mediatedportant for keeping neuronal excitability under control.
effects. Whether the pharmacological heterogeneity ob-Cloned GABAB receptors do not show the expected
served with native receptors relates to differences inpharmacological diversity of native receptors and it is
the effector systems or to the existence of additional,

unknown whether they contribute to pre- as well as
as yet unidentified, GABAB receptor subtypes remains

postsynaptic functions. Here, we demonstrate that
a key issue in the GABAB field. In that context, it is

Balb/c mice lacking the GABAB(1) subunit are viable, interesting to note that the GABAB(2) mRNA is exclusively
exhibit spontaneous seizures, hyperalgesia, hyperlo- expressed in neurons, while the GABAB(1) mRNA is local-
comotor activity, and memory impairment. Upon ized to both neurons and glia (Clark et al., 2000). More-
GABAB agonist application, null mutant mice show nei- over, while GABAB(2) mRNA is barely detectable in the
ther the typical muscle relaxation, hypothermia, or rat caudate putamen, the mRNA for GABAB(1) is relatively
delta EEG waves. These behavioral findings are paral- abundant in this region. In support of a differential distri-
leled by a loss of all biochemical and electrophysio- bution of GABAB(1) and GABAB(2) protein, the pattern of
logical GABAB responses in null mutant mice. This immunoreactivity of the two proteins diverges in the rat
demonstrates that GABAB(1) is an essential component striatum (Ng and Yung, 2001). These recent findings
of pre- and postsynaptic GABAB receptors and casts have further nourished speculations as to the existence
doubt on the existence of proposed receptor subtypes. of additional GABAB receptor proteins (Clark et al., 2000;

Couve et al., 2000). It was hypothesized that GABAB(1)

Introduction and GABAB(2) constitute functional receptors indepen-
dent of each other, in association with proteins that are

GABAB receptors are the metabotropic receptors for the not necessarily part of the same gene family. An example
inhibitory neurotransmitter GABA. They activate second for such an association are the calcitonin receptor-like
messenger systems and modulate potassium and cal- receptors where coexpression of RAMPs, a family of

single membrane spanning domain proteins, drasticallycium channel activity, thereby controlling presynaptic
alters the pharmacological profile of the G protein-cou-transmitter release and postsynaptic silencing of excit-
pled receptor (McLatchie et al., 1998). In heterologousatory neurotransmission (Dutar and Nicoll, 1988; Bittiger
cells, GABAB(2) couples to G proteins (Galvez et al., 2001)
and trafficks to the cell surface in the absence of6 Correspondence: bernhard.bettler@pharma.novartis.com
GABAB(1) (White et al., 1998). This suggested that in a7 Address as of October 1, 2001: Pharmacenter, University of Basel,
neuronal context, GABAB(2) could form a receptor in itsKlingelbergstrasse 50, CH-4056 Basel, Switzerland (e-mail: bernhard.

bettler@unibas.ch). own right (Möhler and Fritschy, 1999). Given these spec-
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ulations on receptor subtypes, it is important to under- and [3H]baclofen binding sites using cortex and cerebel-
lum GABAB(1)

�/� tissue samples (data not shown).stand to which GABAB functions the cloned receptors
contribute in vivo. To address this question, we gener- To investigate whether GABAB(1)

�/� brains still ex-
pressed functional GABAB receptors, we used GTP�[35S]ated GABAB(1)-deficient mice and studied these in classi-

cal GABAB paradigms. binding. This assay is able to detect any GABAB receptor
coupled to G�i/o-type G proteins, the known effectors
of native GABAB receptors (Galvez et al., 2000b). Regard-

Results less of whether the endogenous agonist GABA or baclo-
fen was used for stimulation, whole brain (Figure 2C),

Generation of GABAB(1)-Deficient Balb/c Mice cortex, and cerebellum (data not shown) GABAB(1)
�/�

GABAB(1)-deficient (GABAB(1)
�/�) mice were generated on membranes showed no residual GABAB receptor activ-

the inbred Balb/c strain background. To this end, we ity. This demonstrates the absence of detectable func-
carried out targeted mutagenesis of the GABAB(1) gene tional GABAB receptors.
(Figures 1A and 1B) in Balb/c embryonic stem (ES) cells
(Dinkel et al., 1999). GABAB(1)

�/� Balb/c ES cells were
GABAB(2) Protein Is Downregulated

injected into C57BL/6 blastocysts and chimeric males
in GABAB(1)

�/� Mice
were crossed with Balb/c females. This resulted in an

Given the heterodimeric nature of functional GABAB re-
F1 generation of inbred Balb/c GABAB(1)

�/� mutant mice,
ceptors, we analyzed the expression of the GABAB(2)heterozygous only for the GABAB(1) mutant allele. The
subunit. GABAB(2) mRNA expression levels and distribu-

targeting vector contained a neomycin gene flanked by
tion in brain were unchanged in GABAB(1)

�/� mice (Figure
only 4.6 kb and 1.4 kb of 129Sv genomic sequences.

1C). However, GABAB(2) protein was almost undetectable
Balb/c GABAB(1)

�/� mutant mice are therefore isogenic
when using different GABAB(2)-specific antibodies (Fig-

for all Balb/c genes, with the exception of 6 kb of the
ure 1E). This requirement of GABAB(1) for stable GABAB(2)targeted GABAB(1)

�/� allele deriving from the 129Sv
expression supports that in wild-type mice, virtually all

strain. In all the studies described below, we used age-
GABAB(2) protein is associated with GABAB(1), in agree-

matched GABAB(1)
�/�, GABAB(1)

�/�, and GABAB(1)
�/� mice

ment with previous biochemical studies (Benke et al.,
from litters derived from Balb/c GABAB(1)

�/� � Balb/c
1999). A similar crossregulation of protein expression

GABAB(1)
�/� breeding pairs. The behavioral, biochemical,

was observed in knockout mice with other multisubunit
and electrophysiological changes described below

proteins, e.g., the Kir3 channels (Slesinger et al., 1997)
therefore reflect the consequences of ablating GABAB(1) or the asialoglycoprotein receptor (Tozawa et al., 2001).
in the Balb/c strain background. Mice lacking either one
or both GABAB(1) alleles were viable and occurred at a

Loss of Pre- and Postsynaptic GABAB ResponsesMendelian ratio. No GABAB(1) mRNA was detected in
in GABAB(1)

�/� MiceGABAB(1)
�/� mice by Northern blot (not shown) and in situ

Electrophysiological studies have established the pres-hybridization analysis (Figure 1C).
ence of presynaptic GABAB hetero- and autoreceptors
(Thompson et al., 1993; Wu and Saggau, 1997). First,
we examined whether functional heteroreceptors wereLoss of Detectable GABAB Binding Sites

and GABA-Induced GTP�[35S] Binding present in the hippocampus (Figure 3A). In CA1 pyrami-
dal neurons from wild-type, but not in GABAB(1)

�/� mice,in GABAB(1)
�/� Mice

[3H]CGP54626 receptor autoradiography (Bischoff et al., application of baclofen evoked the expected marked
depression of excitatory postsynaptic currents (EPSCs)1999) and [125I]CGP71872 photoaffinity labeling (Kaup-

mann et al., 1997) revealed a complete lack of antagonist induced by stimulation in the Schaffer collateral-com-
missural area. Activation of A1 receptors by adenosinebinding sites in GABAB(1)

�/� brain, and obvious reduction
of binding sites in GABAB(1)

�/� versus GABAB(1)
�/� animals (Proctor and Dunwiddie, 1987; Thompson et al., 1992)

reduced the EPSCs to the same extent in both geno-(Figures 1C and 1D). Neither could we detect GABAB(1)

proteins by immunoblot analysis of GABAB(1)
�/� brain ex- types, demonstrating that inhibition of glutamate release

by a G protein-coupled receptor other than GABAB is stilltracts (Figure 1E). We have deleted exons 7–10 (T461-
I621; Kaupmann et al., 1997) in the GABAB(1)

�/� animals, intact in GABAB(1)
�/� mice (Figure 3B). Next, we examined

autoreceptor-mediated responses to baclofen in inhibi-thereby removing part of the GABA binding domain (Gal-
vez et al., 2000a) and the first transmembrane domain. tory interneurons. We recorded monosynaptic inhibitory

postsynaptic currents (IPSCs) in CA1 pyramidal neuronsSince we did not detect any truncated GABAB(1) protein
using antibodies directed at extreme N- or C-terminal in the presence of ionotropic glutamate receptor antago-

nists kynurenate or CNQX (Figure 3C). Baclofen wasepitopes of GABAB(1), any dominant-negative effects me-
diated by a possible residual GABAB protein in the null unable to inhibit IPSCs in GABAB(1)

�/� mice, showing that
in contrast to wild-type mice, no autoreceptors weremutant mice is unlikely. Saturation binding experiments

with the antagonist [125I]CGP64213 (Kaupmann et al., operational. This effect was specific to GABAB receptors
since depression of IPSCs following application of the1997) revealed a lack of binding sites in null mutant

and a 18% decrease in GABAB(1)
�/� versus GABAB(1)

�/� �-opioid receptor agonist DAMGO (Cohen et al., 1992;
Capogna et al., 1993) was equally effective in both geno-animals (Figure 2A). A lack of binding sites was also

apparent in agonist binding studies using [3H]APPA types. Postsynaptic GABAB receptors activate a potas-
sium conductance underlying the late IPSP (Lüscher et(Kaupmann et al., 1997) and [3H]baclofen (Figure 2B). In

agreement with the results obtained with whole brain ex- al., 1997), which is partly or completely suppressed by
GABAB antagonists (Bittiger et al., 1993). In GABAB(1)

�/�tracts, we did not detect any [125I]CGP64213, [3H]APPA,
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Figure 1. Generation and Characterization of GABAB(1)-Deficient Mice

(A) Top line, GABAB(1) locus encompassing exons 3 to 15 (boxes), encoding part of the N-terminal and transmembrane (TM) domains 1–6.
Bottom line, mutant allele after homologous recombination. The targeting vector contains a neomycin resistance marker (neo) flanked by 4.6
and 1.4 kb of 129Sv DNA (bold line). The 8.5 kb deletion removes exons 7, 8, 9, 10 (black boxes). The probe used in Southern blot analysis
is indicated. E, EcoRI, B, BamHI. Balb/c embryonic stem cells were injected into C57BL/6 blastocysts. Several chimeric males yielded Balb/c
ES cell-derived germline transmission after mating with Balb/c females, thereby insuring transmission and propagation of the mutant allele
in the inbred Balb/c background.
(B) Southern blot of EcoR1 digested tail DNA from wild-type (�/�), null mutant (�/�), and heterozygous (�/�) mice.
(C) In situ hybridization analysis of GABAB(1) (1, top row) and GABAB(2) (2, middle row) transcripts. The GABAB(1) probe detects GABAB(1a) and
GABAB(1b) variant transcripts. [3H]CGP54626 receptor autoradiography (Bischoff et al., 1999) (bottom row) represents specific binding after
subtraction of nonspecific binding in the presence of excess baclofen (10�5 M). Pseudocolors reflect densities of binding sites as defined
(inset).
(D) SDS-PAGE and autoradiography of brain extracts with [125I]CGP71872 photoaffinity-labeled GABAB(1a) (1a) and GABAB(1b) (1b) proteins
(Kaupmann et al., 1997).
(E) Immunoblot of brain extracts using antibodies directed at N-terminal GABAB(1) (antibody 176; Kaupmann et al., 1998) and C- and N-terminal
GABAB(2) (antibody C22, N22) (Kaupmann et al., 1998) epitopes. An antibody directed at a C-terminal epitope of GABAB(1) (antibody 174.1;
Malitschek et al., 1998) does not recognize any full-length or truncated GABAB(1) protein in GABAB(1)

�/� mice either (data not shown). Equal
loading of samples was controlled with anti-syntaxin antibodies (Sigma, St. Louis, MO).

CA1 pyramidal cells, baclofen had no effect on the hold- osine (Figure 3E). Baclofen-induced outward currents
were never detected in CA1 pyramidal cells ofing current (nor on the input resistance, data not shown),

indicating the absence of GABAB receptors (Figure 3D). GABAB(1)
�/� mice. In conclusion, electrophysiology in

hippocampal slices shows the absence of GABAB auto-In contrast, when applied for the same period of time
to a wild-type cell, baclofen elicited an outward current or heteroreceptors and postsynaptic GABAB receptors

in GABAB(1)
�/� mice.(Figure 3D) and a concomitant drop of the input resis-

tance (data not shown). Adenosine A1 receptor activa-
tion elicited outward currents that were statistically Spontaneous Epileptiform Activity

in GABAB(1)
�/� Miceequal in magnitude when comparing GABAB(1)

�/� and
wild-type mice (Figures 3D and 3E). These experiments The clinically effective muscle-relaxant baclofen is

known to induce hypothermia, while GABAB antagonistswere repeated several times for both baclofen and aden-
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Figure 2. Pharmacological Analysis of Total
Brain Membranes from GABAB(1)-Deficient
Mice

(A) Saturation curves of [125I]CGP64213 antag-
onist binding. No specific binding is detected
in GABAB(1)

�/� brain. The maximal numbers of
binding sites (Bmax) determined for GABAB(1)

�/�

and GABAB(1)
�/� are 1.7 � 0.02 and 1.2 � 0.1

pmol/mg protein, Kd values are 0.84 � 0.03
and 0.58 � 0.06 nM, respectively (mean �

SEM, n � 3).
(B) No significant binding of the agonists
[3H]APPA (10 nM) and [3H]baclofen (30 nM) is
observed in GABAB(1)

�/� mice.
(C) No significant GABA (closed symbols,
filled lines) or baclofen (open symbols, dotted
lines) stimulated GTP�[35S] binding is de-
tected in GABAB(1)

�/� membranes. Values
were normalized to the maximal response ob-
tained with wild-type mice. Error bars indicate
SEM. Results from typical experiments per-
formed in triplicate are shown.

at high doses can be proconvulsive and increase loco- but not of GABAB(1)
�/� mice (Figure 4B), in agreement with

a lack of GABAB activity.motion (Badran et al., 1997). In line with some of the
effects of GABAB drugs, GABAB(1)

�/� mice exhibited overt
and characteristic behavioral abnormalities. Adult GABAB(1)

�/� Mice Exhibit Hyperlocomotor Activity
Locomotor activity of GABAB(1)

�/� and wild-type miceGABAB(1)
�/� mice were hyperactive, displayed sporadic

episodes of intensive running, and showed regularly was quantified in a cylindrical chamber using the Ethovi-
sion recording system. During a 2 hr observation period,spontaneous epileptiform activity. We continuously re-

corded the EEG in freely moving adult mice using im- GABAB(1)
�/� mice moved with significantly increased ve-

locity over longer distances, as compared with wild-planted electrodes. During a two-week observation pe-
riod, adult GABAB(1)

�/� mice generally displayed several type littermates, suggesting that GABAB receptors exert
a tonic brake on locomotion (Figure 5A). In the rotarodepisodes of spontaneous clonic seizures a day. These

seizures lasted several seconds up to a minute. Occa- test, null mutant mice showed no loss of motor coordina-
tion in response to baclofen (Figure 5B). This sharplysionally, absence-type seizures that included phases of

3–5 Hz spike and wave discharges were observed (Fig- contrasted with the expected muscle relaxation seen in
control littermates. Finally, GABAB(1)

�/� mice exhibitedure 4A). Sporadically, tonic-clonic seizures occurred in
GABAB(1)

�/� mice (Figure 4A). The analysis of five no baclofen-induced hypothermia (Bittiger et al., 1993;
Badran et al., 1997), further indicating the absence ofGABAB(1)

�/� animals over three randomly picked days (24
hr observation) shows that the mice had on average 5.0 GABAB receptors (Figure 5C).
(9/5/1), 0.3 (0/1/0), 3.6 (3/7/1), 5.0 (5/8/2), and 2.0 (6/0/0)
seizures per day. Almost all seizures were of the clonic GABAB(1)

�/� Mice Are Hyperalgesic
GABAB agonists are antinociceptive in models of acutetype. Absence-type seizures and spontaneous tonic-

clonic seizures occurred rarely (	 once daily) and not and chronic pain (Sawynok, 1987; Patel et al., 2001). It
is suggested that GABAB-mediated mechanisms in thein every animal. Tonic-clonic seizures were reliably in-

duced in most animals by audiogenic stimuli, e.g., rat- dorsal horn of the spinal cord exert a tonic control of
nociceptive inputs from primary afferent fibers to spino-tling keys. Epileptiform activity was never observed in

heterozygous or wild-type littermates. The occurrence thalamic tract neurons (Lin et al., 1996). We used the
hot-plate, tail-flick, as well as the paw pressure tech-of seizures in GABAB(1)

�/� mice may be explained by a
loss of control over neuronal excitability, owing to the niques to characterize acute pain behaviors (Walker et

al., 1999). The tail-flick is a reflex response to a noxiousabsence of tonic or phasic inhibition (missing late IPSP).
Injection of baclofen induced an expected delta wave thermal stimulus applied to the tail and is generally taken

to represent a spinal reflex response, while the hot-platepattern (1–4 Hz) in the EEG of wild-type (Olpe et al., 1980)
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Figure 3. Absence of Baclofen-Induced Pre- and Postsynaptic Inhibition in CA1 Pyramidal Cells of GABAB(1)-Deficient Mice

(A) EPSC peak amplitudes and representative traces from a GABAB(1)
�/� mouse (top, open circles) showing unchanged amplitudes during

baclofen (50 �M) or CGP54626A (1 �M) application but substantial depression with adenosine (100 �M). In GABAB(1)
�/� mice (bottom, filled

circles), both baclofen and adenosine depressed EPSCs. Current traces (a-d) show averages of ten synaptic responses at indicated time-
points (scale bar 10 ms/20 pA).
(B) Summary bar graph. EPSC amplitude during baclofen application was 96 � 3% of baseline (p 
 0.2 for a hypothetical mean of 100%) in
mutant mice, but significantly reduced in wild-types. No differences between genotypes were observed for adenosine.
(C) Summary graph of monosynaptic IPSC measurements. Comparison of the residual IPSC amplitude during the application of baclofen or
the �-opioid agonist [D-Ala2, NMe-Phe4, Gly5-ol]-enkephalin (DAMGO, 1 �M). No significant depression was observed for baclofen in GABAB(1)

�/�

mice. Depression induced by DAMGO was similar in both genotypes. Measurements were in the presence of kynurenate (2 mM) or CNQX
(10 �M).
(D) Postsynaptic inhibition. Changes in the holding current in response to baclofen and adenosine of a representative CA1 pyramidal cell in
voltage clamp (Vh � �50 mV). In the GABAB(1)

�/� mouse (top, open squares), neither baclofen nor CGP54626A induced an outward current, in
contrast to adenosine. In a wild-type mouse (bottom, filled squares), both agonists reliably elicited outward currents.
(E) Summary graph of all cells examined. The amplitude of the outward current caused by the application of baclofen was absent in GABAB(1)

�/�

mice (�1.5 � 1.4 pA) while the amplitude of adenosine elicited currents did not differ significantly. (A–E) n � 5–10 for each agonist and
genotype, mean � SEM, p*** 	 0.0001.

response to a noxious thermal stimulus to the plantar GABAB(1)
�/� Mice Are Impaired in Passive

Avoidance Learningsurface of the paws is thought to involve supraspinal
sites. In these nociceptive tests, GABAB(1)

�/� mice In view of evidence that the effects of GABAB antagonists
on memory processes may be facilitatory (Mondadorishowed pronounced hyperalgesia to noxious heat in the

hot-plate (Figure 6A) and tail-flick (Figure 6B) tests and et al., 1996; Getova et al., 1997; Castellano et al., 1993)
or inhibitory (Castellano et al., 1993; Brucato et al., 1996;reduced paw withdrawal thresholds to mechanical pres-

sure (Figure 6C). From these data, it is likely that GABAB- Saha et al., 1993), it was of interest to investigate mem-
ory performance in the passive avoidance test (Venablemediated effects do indeed exert a tonic control of noci-

ceptive processes in the naı̈ve animal. The sites for this and Kelly, 1990). The results shown in Figure 7 indicate
that the genotype of GABAB(1)

�/� and GABAB(1)
�/� miceaction are expected to be both spinal and supraspinal,

although further experiments are needed to confirm this. had a marked negative effect on memory performance.
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Figure 4. Spontaneous Epileptiform Activity in GABAB(1)-Deficient Mice

(A) Traces from continuous EEG recorded for 2 weeks in groups of freely moving mice. Top two traces are EEGs recorded from a wild-type
GABAB(1)

�/� and a heterozygous GABAB(1)
�/� mouse without epileptiform activity, lower traces from a GABAB(1)

�/� mouse during absence-type,
clonic, and tonic-clonic seizures. Generally, absence-type seizures included 3–5 Hz spike-wave (see enlarged separate trace) and slow-wave
EEG patterns. During absence-type seizures, the mice were motionless but sometimes exhibited slight head nodding. The length of the
observed seizures and the EEG pattern is indicative of “atypical” rather than “typical” absence seizures. Clonic seizures were characterized
by rearing and bilateral clonus of the forelimbs. During tonic-clonic seizures, typically lasting 10–20 s, the mice exhibited a tonic extension
of the fore- and hindlimbs, followed by synchronous clonic twitches of the hindlimbs. In some animals, tonic-clonic seizures were preceded
by wild running or jumping. The main features of the tonic-clonic seizures observed in GABAB(1)

�/� mice are comparable to the type of seizure
seen in mice after maximal electroshock. Tonic-clonic seizures occurred rarely spontaneously. The tonic-clonic seizure shown was provoked
by audiogenic stimulation (rattling keys). The experimental groups were composed of mixed sex (wild-type, 4 female/2 male; heterozygote,
6 female/2 male; null mutant, 4 female/1 male). Brackets delineate continuous EEG traces.
(B) After the 2 weeks of recording, GABAB(1)

�/� and GABAB(1)
�/� mice were given baclofen (6 mg/kg, i.p.). The EEG of wild-type and GABAB(1)

�/�

mice was comparable 10 min prior to baclofen application (�10 min). However, 20 min after baclofen application, delta waves appeared in
the EEG of wild-type but not in GABAB(1)

�/� mice (�20 min). 30–90 min after baclofen application, wild-type mice typically showed body jerks
and single spikes in the EEG (�38 min). Later on, delta waves reappeared in the EEG and lasted for several hours (�7 hr). Ten hours after
baclofen administration, the EEG traces of wild-type and GABAB(1)

�/� mice are again similar (�10 hr).

Two-factor (sex, genotype) analysis of variance (ANOVA) performance, there was a significant effect of genotype
(F(2,37) � 30.7, p 	 0.001), but no effect of sex and noon latency to enter the dark (shock) compartment on

the training trial showed that the only significant effect sex/genotype interaction (both p 
 0.5). Therefore, to
perform multiple comparisons between wild-type, het-was that of sex (F(2,48) � 6.5, p 	 0.05), the female

animals entering this compartment with a slightly longer erozygote, and homozygote mice, one-factor (genotype)
ANOVA on retention latencies was performed. This con-latency. On retention test latencies, the index of memory
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Figure 5. Behavioral Analysis of GABAB(1)-Deficient Mice

(A) Hyperlocomotor activity in GABAB(1)
�/� mice measured with Ethovision. *P � 0.05 t test (mean � SEM).

(B) Rotarod (12 rpm) endurance performance (mean � SEM) before (pre) and 1 hr after (post) injection of baclofen (12.5 mg/kg, p.o.).
(C) No baclofen-induced hypothermia in GABAB(1)

�/� mice. Rectal body temperature (mean � SEM) 1, 3, and 6 hr after baclofen application
(12.5 mg/kg, p.o.).

firmed the effect of genotype (F(2,40) � 33.4, p 	 0.001) groups to wild-type animals showed no differences in
latencies (t tests: GABAB(1)

�/� versus GABAB(1)
�/� female,and showed that GABAB(1)

�/� differed from both
GABAB(1)

�/� and GABAB(1)
�/� mice (Tukey’s test, p 	 74.6 � 17.8 versus 80.0 � 21.5 s, p 
 0.8; male, 44.4 �

22.8 versus 46.4 � 12.5 s, p 
 0.9; pooled sexes, 64.0 �0.001, in both cases), and that GABAB(1)
�/� and

GABAB(1)
�/� also differed significantly from each other 14.1 versus 61.3 � 12.1 s, p 
 0.8; GABAB(1)

�/� versus
GABAB(1)

�/� female, 83.7 � 19.1 versus 80.0 � 21.5 s,(Tukey’s test, p 	 0.05). Our data indicate that these
passive avoidance deficits are a reflection of impaired p 
 0.8; male, 38.9 � 5.1 versus 46.4 � 12.5 s, p 
 0.5;

pooled sexes, 62.5 � 11.4 versus 61.3 � 12.1 s, p 
 0.9).memory processes and not merely due to some other
behavioral change such as locomotor hyperactivity.
Thus, on the training day, there was no evidence from
the ANOVA that in the passive avoidance apparatus, the Discussion
GABAB(1)

�/� and GABAB(1)
�/� animals had faster latencies

to enter the dark compartment than wild-type animals. The overt phenotype of the GABAB(1)
�/� mice includes

spontaneous epileptic seizures. Given that GABAB an-To increase the chance of detecting such a difference,
multiple t tests were performed without employing any tagonists are effective anti-absence drugs in a strain of

rats (GAERS) with genetic absence epilepsy (Marescauxcorrection for multiple comparisons. These all showed
no difference to wild-type animals (t tests: GABAB(1)

�/� et al., 1992), the appearance of absence-type seizures in
the GABAB(1)

�/� mice is somewhat of a surprise. However,versus GABAB(1)
�/� female, p 
 0.5; male, p 
 0.5; pooled

sexes, p 
 0.8; GABAB(1)
�/� versus GABAB(1)

�/� female, the absence-type seizures seen in the GABAB(1)
�/� mice

are not comparable to the “typical” absence seizuresp 
 0.3; male, p 
 0.1; pooled sexes, p 
 0.9). To be
sure that this was also true for the animals that took observed in the GAERS. The seizures in the GAERS are

characterized by frequent and short EEG bursts, whilepart in the retention test, we also compared training
latencies of only those animals whose retention laten- the ones seen in the GABAB(1)

�/� mice are rare, of much
longer duration, and indicative of “atypical” absencecies were measured (i.e., excluding animals that ex-

ceeded the 150 s cutoff criterion on the training trial). seizures. The experimental GABAB(1)
�/� mice were from

two litters that were born five days apart. The animalsTwo-factor (sex, genotype) ANOVA in this case showed
no significant effects (genotypes p 
 0.5; sex p 
 0.1; were tested starting 19–20 weeks after birth. We did not

yet record EEGs from younger or older animals. It willinteraction p 
 0.7). Again, comparisons of individual
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Figure 6. Assessment of Nociceptive Behavior in Wild-Type and Mutant Mice

(A) Hot-plate test (supraspinal thermal nociception). GABAB(1)
�/� versus GABAB(1)

�/� or GABAB(1)
�/� mice show significant difference in latency

(*** p 	 0.001). Response latencies for paw lick were assessed at 55�C.
(B) Tail-flick test (spinal thermal nociception). GABAB(1)

�/� versus GABAB(1)
�/� or GABAB(1)

�/� mice showed significantly reduced tail-flick latency
(*** p 	 0.001). Response latencies were assessed at infrared intensity 14 (see Experimental Procedures).
(C) Paw pressure test (mechanical nociception). GABAB(1)

�/� mice in comparison to GABAB(1)
�/� or GABAB(1)

�/� mice showed significantly reduced
paw withdrawal latency (*** p 	 0.001). Withdrawal thresholds of the left hind paw were assessed. All experimental groups were composed
of mixed sex (wild-type, 8 female/10 male; heterozygote, 10 female/9 male; null mutant, 8 female/6 male). Nociception tests were analyzed
with Tukey’s HSD test. In all tests, there were no significant differences in the behavior of wild-type and heterozygous animals or between
males and females. During nociceptive tests, two animals had seizures and three others vocalized in the GABAB(1)

�/� group.

be important to determine the exact postnatal time-of- therapeutic effects. The interpretation of the results from
pain tests is, however, somewhat complicated by theonset of the different seizure types observed in

GABAB(1)
�/� mice, and to see whether their appearance hyperlocomotion observed in knockout animals. It could

be argued that the response to painful stimuli reflectsis coincidental or sequential. It is also of interest to
see whether continuous spontaneous seizure activity in an increased reactivity, irrespective of the stimulus.

However, it is well established that, e.g., morphine, theGABAB(1)-deficient mice results in morphological and/or
gene regulatory changes that may counteract or aggra- best known analgesic drug, produces hyperactivity and

that this hyperactivity does not interfere with the effectsvate the epileptic phenotype.
The fact that the GABAB(1)

�/� mice are hyperalgesic of morphine in tail-flick, paw-lick, and mechanical pres-
sure paradigms (Babbini and Davis, 1972). Moreover,suggests the presence of a GABAB-related tone in wild-

type mice. This is possibly of importance for the man- the fact that GABAB(1)
�/� animals are hyperalgesic in par-

adigms that involve distinct motor responses makesagement of pain disorders. For example, positive modu-
lators acting at GABAB receptors may be therapeutically a broad confounding effect through hyperactivity less

likely. For example, paw-licking is a behavior where themore useful than GABAB agonists because they act syn-
ergistically with endogenous GABA. Modulators dis- response to the painful stimuli is easily observable. Two

GABAB(1)
�/� animals, but no heterozygous or wild-typecriminate between activated and nonactivated recep-

tors and therefore may be devoid of the unwanted side animal, vocalized when placed on the hot plate.
GABAB(1)

�/� or wild-type animals do not lick their paweffects seen with GABAB agonists while retaining the

Figure 7. Stepthrough Passive Avoidance
Learning in Male and Female, Wild-Type and
Mutant Mice

Ordinate represents latency in seconds
(mean � SEM) to step into the dark (shock)
compartment on the training trial and reten-
tion test of learned behavior. Increase in la-
tency to enter the dark compartment is taken
as an index of memory of the initial experi-
ence. ** p 	 0.01 versus same sex (�/�) ani-
mals (One-way ANOVA of each sex, p 	 0.001
in both cases, followed by Tukey’s test). The
experimental groups were composed as fol-
lows: wild-type (8 female/10 male), heterozy-
gote (10 female/9 male), null mutant (11 fe-
male/6 male).
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once placed on a plate at room temperature, further stressed that the known modulatory effects of GABAB

arguing against an increased reactivity in GABAB(1)
�/� antagonists on glutamatergic synapses could produce

mice independent of the stimulus. Vocalization is also similar effects (Mondadori et al., 1996). On the other
observed in the paw withdrawal test, in addition to paw hand, memory-impairing effects of GABAB antagonists
withdrawal to noxious pressure. Again, we do not ob- are also reported (Castellano et al., 1993; Brucato et al.,
serve paw withdrawal or vocalization in restrained 1996), as well as memory-improving effects of baclofen
GABAB(1)

�/� animals without the application of pressure (Saha et al., 1993; Castellano et al., 1993). The diversity
to the paw. Changes in the noxious thermal and mechan- of these memory effects makes it difficult to identify a
ical threshold suggest that there is a loss of central common mechanism. The widespread distribution of
GABAB-related tone in the nociceptive system of the GABAB receptors in the brain and the numerous modula-
GABAB(1)

�/� animals. In the spinal cord, GABAB receptors tory effects on various synapses leave ample room for
have a major presynaptic inhibitory influence on noci- speculations. The lack of presynaptic and postsynaptic
ceptive transmission in the dorsal horn (Malcangio and GABAB receptors (Figure 3) in null mutant mice leads
Bowery, 1996). This inhibitory system strongly modu- to a loss of control over both excitatory and inhibitory
lates the polysynaptic nocifensive reflex that is used in neurotransmission. The experiments with null mutant
the nociceptive assays. In addition, to a lesser extent, and heterozygous mice show that they are impaired in
GABAB receptor activation can influence the monosyn- passive avoidance learning, more in line with the ob-
aptic spinal reflex in the spinal cord. Taken these consid- served memory-impairing effects of GABAB antagonists
erations together, it is likely that the loss of GABAB(1) (Castellano et al., 1993; Brucato et al., 1996).
receptors in the GABAB(1)

�/� animals results in a strong For a more specific intervention in nervous system
alteration of the nocifensive reflex and suggests in- disorders, the existence of distinct GABAB subtypes
creased central hyperexcitability of the spinal nocicep- would be desirable (Bittiger et al., 1993). Many studies
tive pathway. Although hyperlocomotion does not imply suggest that such subtypes do exist (Bonanno and Rai-
that knockout animals have a lower threshold to engage teri, 1993; Mott and Lewis, 1994). However, cloned
motor programs, the definite separation of the nocicep- GABAB receptors do not reproduce the pharmacological
tive and direct motor components of the decreased diversity of native receptors (Marshall et al., 1999).
nociceptive threshold requires detailed electrophysio- Whether the heterogeneity of native receptors is ex-
logical investigation of mono- and polysynaptic trans- plained by the existence of unidentified GABAB receptor
mission in the spinal cord. subunits remains one of the key issues in the GABAB

In the present studies, a clear impairment of passive field. GABAB(1)
�/� animals now demonstrate a lack of

avoidance performance was observed which was re- detectable GABAB responses in all biochemical, electro-
lated to gene dosage. Our data indicate that these pas- physiological, and behavioral paradigms studied. This
sive avoidance deficits are a reflection of impaired mem- indicates that most, probably all, brain GABAB receptors
ory processes rather than some other behavioral change incorporate the GABAB(1) subunit. It has been speculated
such as locomotor hyperactivity. Thus, even though in that in a neuronal context, the GABAB(2) subunit could
this experiment training latencies were relatively long, act as a receptor in its own right (Möhler and Fritschy,
with a potential to be reduced, they were not reduced 1999). From the data herein, it follows that GABAB(2) likely
in GABAB(1)

�/� or GABAB(1)
�/� animals. This suggests ei- does not function as an autonomous receptor. While

ther that hyperactivity is not present in the passive our results are in line with previous work that did not find
avoidance apparatus or that if present, it can be ex- evidence for pharmacologically distinct GABAB receptor
pressed in the part of the apparatus where the animal subtypes (Waldmeier et al., 1994), there remains the
prefers to be without influencing stepthrough latency. possibility that unidentified splice variants or GABAB(1)-It is established that GABAB receptor function influences associated proteins generate diversity. For example,
cognitive performance in the mammalian brain (Monda-

promiscuity amongst G protein-coupled receptors
dori et al., 1996). High doses of the clinically used GABAB (Ginés et al., 2000; AbdAlla et al., 2000) may have some
agonist baclofen are documented to induce amnesia

bearing on GABAB receptor pharmacology. Given the(Sandyk and Gillman, 1985). Similarly, the lasting antero-
results presented herein, it is, however, important tograde amnesia that occurs under the influence of the
keep in mind that the differences in the potency of a“date-rape drug” ��hydroxy butyrate (GHB) (Schwartz
particular drug in functional studies could relate to dif-et al., 2000) is likely related to the agonistic action of
ferences in the neuronal effector systems and do notGHB at GABAB receptors (Lingenhoehl et al., 1999).
necessarily need to reflect subtypes. Further insight willBaclofen, like GHB, induces EEG slow waves that have
certainly derive from the study of GABAB(2)

�/� mice.been associated with reduced memory performance
(Figure 4B; Jones-Gotman et al., 1994). GABAB receptor Experimental Procedures
antagonists exhibit a wide range of memory-enhancing
effects in a variety of learning situations. This includes Generation and Analysis of Null Mutant Mice
learning of passive avoidance in mice, active and pas- Null mutant mice were generated using Balb/c embryonic stem cells

(Dinkel et al., 1999) as outlined in Figure 1. In situ hybridization andsive avoidance in aged rats, radial maze in rats, social
Northern blot analysis was performed as described (Kaupmann etrecognition in rats, and color-place concept tasks in
al., 1997; Bischoff et al., 1999), using probes derived from residuesRhesus monkeys (for reference see Mondadori et al.,
442–599 of the GABAB(1a) (Kaupmann et al., 1997) and residues 83

1996). It was proposed that GABAB receptor antagonists to 324 of the GABAB(2) (Kaupmann et al., 1998) cDNAs. Photoaffinity
facilitate cholinergic transmission, given the known labeling, radioligand binding experiments, and immunochemistry
memory-enhancing effects of cholinergic substances in were carried out as described elsewhere (Kaupmann et al., 1997,

1998; Bischoff et al., 1999; Galvez et al., 2000b). All ligands usedanimals (Mondadori et al., 1996). Likewise, it was
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in binding studies were synthesized in house. [125I]CGP64213 and increasing pressures, using a cutoff threshold of 150 g. The paw
withdrawal thresholds (PWT) were determined as the first sign of[125I]CGP71872 were labeled to a specific radioactivity of 
2000 Ci/

mmol (ANAWA AG, Wangen, Switzerland). All animal experiments a pain response, normally exhibited as a paw withdrawal, in the
animal.were subject to institutional review and conducted in accordance

with Swiss guidelines.

Passive Avoidance
Electrophysiology Before passive avoidance training, mice were housed singly on a
Horizontal slices containing the hippocampus (300 �m thick) were 12 hr light-dark cycle (lights on at 6:15) with lab chow and water
prepared from P12 to P21 mice using standard procedures. Visual- available ad libitum. One trial stepthrough passive avoidance train-
ized whole-cell voltage-clamp recording techniques were used to ing was performed as previously described in detail (Venable and
measure holding currents and synaptic responses of CA1 pyramidal Kelly, 1990). The Veterinary Authority of the state of Basel-Stadt
cells. To evoke synaptic potentials, we delivered stimuli (0.2 ms approved the studies. In brief, on the training trial, each mouse
duration) at 0.1 Hz (0.05 Hz for IPSCs) through bipolar stainless steel was placed singly into the light side of a two-compartment trough-
electrodes. The recording chamber was superfused (2 ml/min) with shaped apparatus. The door to the dark compartment was opened
an external solution containing (in mM) NaCl 119, KCl 2.5, MgCl2 1.3, and, simultaneously, timing by a computer was initiated. When the
CaCl2 2.5, NaH2PO4 1.0, NaHCO3 26.2, and Glucose 11. To dampen mouse broke a photocell beam located 10.5 cm into the dark com-
polysynaptic activity, 4 mM Ca2�, 4 mM Mg2�, and 200 nM CNQX partment, the latency from opening the door to the animal breaking
were added in EPSC recordings. IPSC recordings were in the pres- the beam (stepthrough latency) was automatically recorded and
ence of 2 mM kynurenate or 10 �M CNQX. All experiments were a Campden Instruments 521 C Shock Source was automatically
carried out at 32�C–34�C. The internal solution contained (in mM): activated. This resulted in the application of a footshock (0.5 mA
K-Gluconate 140, HEPES 5, MgCl2 2, EGTA 1.1, Na2

�ATP 2, creatine- rectangular current waves) between the stainless steel plates, which
phosphate 5, and Na�

3GTP 0.6. Recordings (sweeps of 500 ms every comprised the dark compartment. The footshock lasted a maximum
10 s) were amplified with an Axopatch 1D (Axon Instruments, Foster of 5 s or until the animal escaped back to the light compartment.
City, CA) or Visual patch 500 (Bio-logic, France), filtered at 2 kHz In the present experiments, all animals escaped back to the light
and digitized at 10 kHz (National Instruments Board PCI-MIO-16E4, compartment within 5 s. Animals which did not enter the dark com-
NI-DAQ Igor Software, Wave Metrics) and stored on a hard disk. partment within 150 s on the training trial were given a training
Data are expressed as means � SEM. Drugs were from CNQX latency of 150 s, received no footshock, and were excluded from the
(Tocris), kynurenic acid (RBI), baclofen (RBI), adenosine (Sigma), memory retention test. The memory retention test was performed on
CGP54626A (Novartis), DAMGO (Sigma). the day following the training trial and was identical to it except that

no footshock was administered. Maximum latency in the retention
test was 300 s. Statistical analysis was done using SYSTAT (SPSSEEG Measurements
Inc. Version 8.0).A three-pole socket was implanted over the cortex and embedded

in dental cement under anesthesia (Hypnorm/diazepam, buprenor-
phin-hydrochloride). Bipolar leads from the mice were recorded via Acknowledgments
cables connected to a slip-ring system. The behavior of the animals,
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and Baclofen-Induced Hypothermia
For measuring locomotor activity, a color video camera (DXC- Received March 16, 2001; revised June 18, 2001.
107AP, Sony) surveyed the open field. The camera signal was ana-
lyzed using EthoVision� 1.90 software (Noldus Information Technol- References
ogy, Netherlands). For rotarod performance, mice were first trained
twice and the next day tested for endurance performance (cutoff AbdAlla, S., Lother, H., and Quitterer, U. (2000). AT1-receptor hetero-
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